Let f and ϕ(s) be given as in the theorem, and fix s with finite abscissa of convergence σ>min(0,σc) , so the Dirichlet series
ϕ(s)=n=1∑∞f(n)n−s
converges at s. Write
f(x)=n=1∑∞f(n)χ(x,n)
where
χ(x,n)={0,ifn<x1,ifn⩾x}
Then, for every X⩾1
s∫1Xxs+1f(x)dx=s∫1Xn=1∑∞χ(x,n)xs+1f(n)dx= s∫1Xn⩽X∑χ(x,n)xs+1f(n)dx=
=sn⩽1∑f(n)1∫Xχ(x,n)xs+11dx= sn⩽1∑f(n)1∫nxs+11dx= =n⩽1∑f(n)s1(ns1−Xs1)= n⩽1∑nsf(n)−Xsf(x)
Now let X−>∞ . Then, by the convergence of ϕ(s), the first term on the right tends to ϕ(s). Moreover, Kronecker’s Lemma implies that the second term tends to 0. Hence we conclude
limX−>∞s∫1Xxs+1f(x)=ϕ(s).
which proves our formula. ■
Comments