Question #130825
Prove that for Re(s) >1,we have phi(s) =s integral from 1 to infinity f(x)/x^{s+1} dx
1
Expert's answer
2020-09-01T16:44:18-0400

Let ff and ϕ(s)\phi(s) be given as in the theorem, and fix ss with finite abscissa of convergence σ>min(0,σc)\sigma>min(0,\sigma_c) , so the Dirichlet series

ϕ(s)=n=1f(n)ns\phi(s)=\displaystyle\sum_{n=1}^\infty f(n)n^{-s}

converges at ss. Write

f(x)=n=1f(n)χ(x,n)f(x)=\displaystyle\sum_{n=1}^\infty f(n)\chi(x,n)

where

χ(x,n)={1,ifnx0,ifn<x}\chi(x,n)={1, if n\geqslant x\brace 0, if n<x}

Then, for every X1X\geqslant 1

s1Xf(x)xs+1dx=s1Xn=1χ(x,n)f(n)xs+1dx=s\intop_1^X \frac{f(x)}{x^{s+1}}dx=s\intop_1^X\displaystyle\sum_{n=1}^\infty\chi(x,n)\frac{f(n)}{x^{s+1}}dx= s1XnXχ(x,n)f(n)xs+1dx=s\intop_1^X\displaystyle\sum_{n\leqslant X}\chi(x,n)\frac{f(n)}{x^{s+1}}dx=

=sn1f(n)1Xχ(x,n)1xs+1dx==s\displaystyle\sum_{n\leqslant 1}f(n)\intop_1^X\chi(x,n)\frac{1}{x^{s+1}}dx= sn1f(n)1n1xs+1dx=s\displaystyle\sum_{n\leqslant 1}f(n)\intop_1^n\frac{1}{x^{s+1}}dx= =n1f(n)1s(1ns1Xs)==\displaystyle\sum_{n\leqslant 1}f(n)\frac{1}{s}(\frac{1}{n^s}-\frac{1}{X^s})= n1f(n)nsf(x)Xs\displaystyle\sum_{n\leqslant 1}\frac{f(n)}{n^s}-\frac{f(x)}{X^s}

Now let X>X->\infty . Then, by the convergence of ϕ(s)\phi(s), the first term on the right tends to ϕ(s)\phi(s). Moreover, Kronecker’s Lemma implies that the second term tends to 0. Hence we conclude

limX>s1Xf(x)xs+1=ϕ(s)lim_{X->\infty}s\intop_1^X \frac{f(x)}{x^{s+1}}=\phi(s).

which proves our formula. \blacksquare



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS