For the function
f(z)=1/(z²(1 + z + 2z2))
,
find the first three terms of the Laurent Series expansion of f about a = 0 that converges
in the deleted disk D'(0, δ) for some δ > 0
1
Expert's answer
2020-09-30T18:49:56-0400
f(z)=z2(1+z+2z2)1=2z2(21+z+z2)1=2z2((z+41)2+167)1=2z2((z+41)2+(47)2)1=2z2(z+41−j7)(z+41+j7)1{wherejis a complex number}=21⋅2jz274⎝⎛(z+41−j7)1−(z+41+j7)1⎠⎞=z27−j(1−j74⋅1−j74z+11−1+j74⋅1+j74z+11)=z27−j(1−j74(1−1−j74z+(1−j74z)2−(1−j74z)3+...)−1+j74(1−1+j74z+(1+j74z)2−(1+j74z)3+...))=z27−j(1−j74−1+j74−(1−j74)2z+(1−j74)3z2−(1−j74)4z3+...+(1+j74)2z−(1+j74)3z2+(1+j74)4z3−...)=z27−j(84(1+j7−1+j7)+8242z((1−j7)2−(1+j7)2)+8343z2((1+j7)3−(1−j7)3)+8444z3((1−j7)4−(1+j7)4)+...)=z27−j(8j87+8242z(−4j7)+8343z2(3(j7)+3(j7)+(j7)3+(j7)3)+8444z3(4(−j7)−4(j7)+4(−j7)3−4(j7)3)+...)=z27−j(8j87+8242z(−4j7)+8343z2(−8j7)+8444z3(48j7)+8545z4(−32j7)+O(z5))=z2−j2(1+4z(−4)+8z2(−8)+16z3(48)+32z4(−32)+O(z5))=z21(1+4z(−4)+8z2(−8)+16z3(48)+32z4(−32)+O(z5))=z21(1−z−z2+3z3−z4+O(z5))=z21−z1−1+3z−z2+O(z3)∴The first three terms of the Laurent seriesf(z)isf(z)=z21−z1−1
Finding a professional expert in "partial differential equations" in the advanced level is difficult.
You can find this expert in "Assignmentexpert.com" with confidence.
Exceptional experts! I appreciate your help. God bless you!
Comments