f ( z ) = 1 z 2 ( 1 + z + 2 z 2 ) = 1 2 z 2 ( 1 + z 2 + z 2 ) = 1 2 z 2 ( ( z + 1 4 ) 2 + 7 16 ) = 1 2 z 2 ( ( z + 1 4 ) 2 + ( 7 4 ) 2 ) = 1 2 z 2 ( z + 1 − j 7 4 ) ( z + 1 + j 7 4 ) { where j is a complex number } = 1 2 ⋅ 4 2 j z 2 7 ( 1 ( z + 1 − j 7 4 ) − 1 ( z + 1 + j 7 4 ) ) = − j z 2 7 ( 4 1 − j 7 ⋅ 1 4 1 − j 7 z + 1 − 4 1 + j 7 ⋅ 1 4 1 + j 7 z + 1 ) = − j z 2 7 ( 4 1 − j 7 ( 1 − 4 1 − j 7 z + ( 4 1 − j 7 z ) 2 − ( 4 1 − j 7 z ) 3 + . . . ) − 4 1 + j 7 ( 1 − 4 1 + j 7 z + ( 4 1 + j 7 z ) 2 − ( 4 1 + j 7 z ) 3 + . . . ) ) = − j z 2 7 ( 4 1 − j 7 − 4 1 + j 7 − ( 4 1 − j 7 ) 2 z + ( 4 1 − j 7 ) 3 z 2 − ( 4 1 − j 7 ) 4 z 3 + . . . + ( 4 1 + j 7 ) 2 z − ( 4 1 + j 7 ) 3 z 2 + ( 4 1 + j 7 ) 4 z 3 − . . . ) = − j z 2 7 ( 4 ( 1 + j 7 − 1 + j 7 ) 8 + 4 2 z 8 2 ( ( 1 − j 7 ) 2 − ( 1 + j 7 ) 2 ) + 4 3 z 2 8 3 ( ( 1 + j 7 ) 3 − ( 1 − j 7 ) 3 ) + 4 4 z 3 8 4 ( ( 1 − j 7 ) 4 − ( 1 + j 7 ) 4 ) + . . . ) = − j z 2 7 ( j 8 7 8 + 4 2 z 8 2 ( − 4 j 7 ) + 4 3 z 2 8 3 ( 3 ( j 7 ) + 3 ( j 7 ) + ( j 7 ) 3 + ( j 7 ) 3 ) + 4 4 z 3 8 4 ( 4 ( − j 7 ) − 4 ( j 7 ) + 4 ( − j 7 ) 3 − 4 ( j 7 ) 3 ) + . . . ) = − j z 2 7 ( j 8 7 8 + 4 2 z 8 2 ( − 4 j 7 ) + 4 3 z 2 8 3 ( − 8 j 7 ) + 4 4 z 3 8 4 ( 48 j 7 ) + 4 5 z 4 8 5 ( − 32 j 7 ) + O ( z 5 ) ) = − j 2 z 2 ( 1 + z 4 ( − 4 ) + z 2 8 ( − 8 ) + z 3 16 ( 48 ) + z 4 32 ( − 32 ) + O ( z 5 ) ) = 1 z 2 ( 1 + z 4 ( − 4 ) + z 2 8 ( − 8 ) + z 3 16 ( 48 ) + z 4 32 ( − 32 ) + O ( z 5 ) ) = 1 z 2 ( 1 − z − z 2 + 3 z 3 − z 4 + O ( z 5 ) ) = 1 z 2 − 1 z − 1 + 3 z − z 2 + O ( z 3 ) ∴ The first three terms of the Laurent series f ( z ) is f ( z ) = 1 z 2 − 1 z − 1 \begin{aligned}
f(z) &= \frac{1}{z^2(1 + z + 2z^2)}\\
&= \frac{1}{2z^2\left(\frac{1 + z}{2}+ z^2\right)} \\
&= \frac{1}{2z^2\left(\left(z + \frac{1}{4}\right)^2 + \frac{7}{16}\right)}\\
&= \frac{1}{2z^2\left(\left(z + \frac{1}{4}\right)^2 + \left(\frac{\sqrt{7}}{4}\right)^2\right)}\\
&= \frac{1}{2z^2\left(z + \frac{1 - j\sqrt{7}}{4}\right)\left(z + \frac{1 + j\sqrt{7}}{4}\right)}\\\\&\hspace{0.5cm}\{\textsf{where} \hspace{0.1cm}j \hspace{0.1cm}\textsf{is a complex number}\}\\
&= \frac{1}{2} \cdot \frac{4}{2jz^2\sqrt{7}} \left(\frac{1}{\left(z + \frac{1 - j\sqrt{7}}{4}\right)} - \frac{1}{\left(z + \frac{1 + j\sqrt{7}}{4}\right)}\right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left(\frac{4}{1 - j\sqrt{7}}\cdot\frac{1}{\frac{4}{1 - j\sqrt{7}} z + 1} - \frac{4}{1 + j\sqrt{7}}\cdot\frac{1}{\frac{4}{1 + j\sqrt{7}} z + 1}\right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left(\frac{4}{1 - j\sqrt{7}}\left(1 - \frac{4}{1 - j\sqrt{7}}z + \left(\frac{4}{1 - j\sqrt{7}}z\right)^2 - \left(\frac{4}{1 - j\sqrt{7}}z\right)^3 +...\right) - \right.\\&\left.\frac{4}{1 + j\sqrt{7}}\left(1 - \frac{4}{1 + j\sqrt{7}}z + \left(\frac{4}{1 + j\sqrt{7}}z\right)^2 - \left(\frac{4}{1 + j\sqrt{7}}z\right)^3 +...\right) \right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left(\frac{4}{1 - j\sqrt{7}} - \frac{4}{1 + j\sqrt{7}} -\right.\\& \left(\frac{4}{1 - j\sqrt{7}}\right)^2 z + \left(\frac{4}{1 - j\sqrt{7}}\right)^3 z^2 - \left(\frac{4}{1 - j\sqrt{7}}\right)^4 z^3 +...+\\&\left.\left(\frac{4}{1 + j\sqrt{7}}\right)^2 z - \left(\frac{4}{1 + j\sqrt{7}}\right)^3 z^2 + \left(\frac{4}{1 + j\sqrt{7}}\right)^4 z^3 -...\right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left(\frac{4(1 + j\sqrt{7} - 1 + j\sqrt{7})}{8} +\right.\\& \frac{4^2 z}{8^2} ((1 - j\sqrt{7})^2 - (1 + j\sqrt{7})^2) + \\&\left.\frac{4^3 z^2}{8^3} ((1 + j\sqrt{7})^3 - (1 - j\sqrt{7})^3) + \frac{4^4 z^3}{8^4} ((1 - j\sqrt{7})^4 - (1 + j\sqrt{7})^4) +...\right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left( \frac{j8\sqrt{7}}{8} + \frac{4^2 z}{8^2} (-4j\sqrt{7}) + \right.\\&\frac{4^3 z^2}{8^3} (3(j\sqrt{7}) + 3(j\sqrt{7}) + (j\sqrt{7})^3 + (j\sqrt{7})^3) +\\&\left. \frac{4^4 z^3}{8^4} (4(-j\sqrt{7}) - 4(j\sqrt{7}) + 4(-j\sqrt{7})^3 - 4(j\sqrt{7})^3) +...\right)
\\&=\frac{-j}{z^2 \sqrt{7}} \left(\frac{j8\sqrt{7}}{8} + \frac{4^2 z}{8^2} (-4j\sqrt{7}) + \right.\\&\frac{4^3 z^2}{8^3} (-8j\sqrt{7}) + \frac{4^4 z^3}{8^4}(48j\sqrt{7}) +\\&\left. \frac{4^5 z^4}{8^5}(-32j\sqrt{7}) + O(z^5)\right)
\\&=\frac{-j^2}{z^2} \left( 1+ \frac{z}{4} (-4) + \frac{z^2}{8} (-8) + \frac{z^3}{16}(48) + \frac{z^4}{32}(-32) + O(z^5)\right)
\\&=\frac{1}{z^2} \left( 1+ \frac{z}{4} (-4) + \frac{z^2}{8} (-8) + \frac{z^3}{16}(48) + \frac{z^4}{32}(-32) + O(z^5)\right)
\\&=\frac{1}{z^2} \left( 1 - z - z^2 + 3z^3 - z^4 + O(z^5)\right)
\\&=\frac{1}{z^2} - \frac{1}{z} - 1 + 3z - z^2 + O(z^3)
\end{aligned}
\therefore \hspace{0.1cm} \textsf{The first three terms of the}\\\textsf{ Laurent series} \hspace{0.1cm}f(z) \hspace{0.1cm} \textsf{is} \\
\displaystyle f(z) = \frac{1}{z^2} - \frac{1}{z} - 1 f ( z ) = z 2 ( 1 + z + 2 z 2 ) 1 = 2 z 2 ( 2 1 + z + z 2 ) 1 = 2 z 2 ( ( z + 4 1 ) 2 + 16 7 ) 1 = 2 z 2 ( ( z + 4 1 ) 2 + ( 4 7 ) 2 ) 1 = 2 z 2 ( z + 4 1 − j 7 ) ( z + 4 1 + j 7 ) 1 { where j is a complex number } = 2 1 ⋅ 2 j z 2 7 4 ⎝ ⎛ ( z + 4 1 − j 7 ) 1 − ( z + 4 1 + j 7 ) 1 ⎠ ⎞ = z 2 7 − j ( 1 − j 7 4 ⋅ 1 − j 7 4 z + 1 1 − 1 + j 7 4 ⋅ 1 + j 7 4 z + 1 1 ) = z 2 7 − j ( 1 − j 7 4 ( 1 − 1 − j 7 4 z + ( 1 − j 7 4 z ) 2 − ( 1 − j 7 4 z ) 3 + ... ) − 1 + j 7 4 ( 1 − 1 + j 7 4 z + ( 1 + j 7 4 z ) 2 − ( 1 + j 7 4 z ) 3 + ... ) ) = z 2 7 − j ( 1 − j 7 4 − 1 + j 7 4 − ( 1 − j 7 4 ) 2 z + ( 1 − j 7 4 ) 3 z 2 − ( 1 − j 7 4 ) 4 z 3 + ... + ( 1 + j 7 4 ) 2 z − ( 1 + j 7 4 ) 3 z 2 + ( 1 + j 7 4 ) 4 z 3 − ... ) = z 2 7 − j ( 8 4 ( 1 + j 7 − 1 + j 7 ) + 8 2 4 2 z (( 1 − j 7 ) 2 − ( 1 + j 7 ) 2 ) + 8 3 4 3 z 2 (( 1 + j 7 ) 3 − ( 1 − j 7 ) 3 ) + 8 4 4 4 z 3 (( 1 − j 7 ) 4 − ( 1 + j 7 ) 4 ) + ... ) = z 2 7 − j ( 8 j 8 7 + 8 2 4 2 z ( − 4 j 7 ) + 8 3 4 3 z 2 ( 3 ( j 7 ) + 3 ( j 7 ) + ( j 7 ) 3 + ( j 7 ) 3 ) + 8 4 4 4 z 3 ( 4 ( − j 7 ) − 4 ( j 7 ) + 4 ( − j 7 ) 3 − 4 ( j 7 ) 3 ) + ... ) = z 2 7 − j ( 8 j 8 7 + 8 2 4 2 z ( − 4 j 7 ) + 8 3 4 3 z 2 ( − 8 j 7 ) + 8 4 4 4 z 3 ( 48 j 7 ) + 8 5 4 5 z 4 ( − 32 j 7 ) + O ( z 5 ) ) = z 2 − j 2 ( 1 + 4 z ( − 4 ) + 8 z 2 ( − 8 ) + 16 z 3 ( 48 ) + 32 z 4 ( − 32 ) + O ( z 5 ) ) = z 2 1 ( 1 + 4 z ( − 4 ) + 8 z 2 ( − 8 ) + 16 z 3 ( 48 ) + 32 z 4 ( − 32 ) + O ( z 5 ) ) = z 2 1 ( 1 − z − z 2 + 3 z 3 − z 4 + O ( z 5 ) ) = z 2 1 − z 1 − 1 + 3 z − z 2 + O ( z 3 ) ∴ The first three terms of the Laurent series f ( z ) is f ( z ) = z 2 1 − z 1 − 1
Comments