Question #137555

Using complex numbers, prove that the, angles A, B and C of a planar triangle satisfy the relations

(i) cos^2 A + cos^2 B + cos^2 C = 1 − 2 cos A cos B cos C

(ii) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C.


1
Expert's answer
2020-10-13T19:06:21-0400

(i)

12cosAcosBcosC=12(eiA+eiA2)(eiИ+eiИ2)(eiС+eiС2)=1 − 2 cos A cos B cos C=1-2(\frac{e^{iA}+e^{−iA}}{2})(\frac{e^{iИ}+e^{−iИ}}{2})(\frac{e^{iС}+e^{−iС}}{2})=

=114(ei(A+B+C)+ei(A+B+C)+ei(A+BC)+ei(A+BC)+ei(AB+C)+ei(AB+C)+ei(A+B+C)+ei(A+B+C))==1-\frac{1}{4} (e^{i(A+B+C)}+e^{-i(A+B+C)}+e^{i(A+B-C)}+e^{-i(A+B-C)}+e^{i(A-B+C)}+e^{-i(A-B+C)}+e^{i(-A+B+C)}+e^{-i(-A+B+C)})=

=114(ei(π2C)+ei(π2C)+ei(π2B)+ei(π2B)+ei(π2A)+ei(π2A))==1-\frac{1}{4}(e^{i(\pi-2C)}+e^{-i(\pi-2C)}+e^{i(\pi-2B)}+e^{-i(\pi-2B)}+e^{i(\pi-2A)}+e^{-i(\pi-2A)})=

=112(cos(π2C)+cos(π2B)+cos(π2A))==1-\frac{1}{2}(cos(\pi-2C)+cos(\pi-2B)+cos(\pi-2A))=

=1+12(cos2C+cos2B+cos2A)=cos2A+cos2B+cos2C.=1+\frac{1}{2}(cos2C+cos2B+cos2A)=cos^2A+cos^2B+cos^2C.


(ii)

4sinAsinBsinC=4(eiAeiA2i)(eiBeiB2i)(eiCeiC2i)=4sinAsinBsinC=4(\frac{e^{iA}−e^{−iA}}{2i})(\frac{e^{iB}−e^{−iB}}{2i})(\frac{e^{iC}−e^{−iC}}{2i})=

=ei(A+BC)+ei(AB+C)2i+ei(B+CA)+ei(BC+A)2i+ei(C+AB)+ei(CA+B)2i+ei(A+B+C)2iei(ABC)2i==\frac{-e^{i(A+B-C)}+e^{i(-A-B+C)}}{-2i}+\frac{-e^{i(B+C-A)}+e^{i(-B-C+A)}}{-2i}+\frac{-e^{i(C+A-B)}+e^{i(-C-A+B)}}{-2i}+\frac{e^{i(A+B+C)}}{-2i}-\frac{e^{i(-A-B-C)}}{-2i}=

=sin(A+BC)+sin(B+CA)+sin(C+AB)+eiπ2ieiπ2i==sin(A+B−C)+sin(B+C−A)+sin(C+A−B)+\frac{e^{i\pi}}{-2i}-\frac{e^{-i\pi}}{-2i}=

=sin(π2C)+sin(π2A)+sin(π2B)=sin2C+sin2A+sin2B=sin(π−2C)+sin(π−2A)+sin(π−2B)=sin2C+sin2A+sin2B


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS