(i)
1−2cosAcosBcosC=1−2(2eiA+e−iA)(2eiИ+e−iИ)(2eiС+e−iС)=
=1−41(ei(A+B+C)+e−i(A+B+C)+ei(A+B−C)+e−i(A+B−C)+ei(A−B+C)+e−i(A−B+C)+ei(−A+B+C)+e−i(−A+B+C))=
=1−41(ei(π−2C)+e−i(π−2C)+ei(π−2B)+e−i(π−2B)+ei(π−2A)+e−i(π−2A))=
=1−21(cos(π−2C)+cos(π−2B)+cos(π−2A))=
=1+21(cos2C+cos2B+cos2A)=cos2A+cos2B+cos2C.
(ii)
4sinAsinBsinC=4(2ieiA−e−iA)(2ieiB−e−iB)(2ieiC−e−iC)=
=−2i−ei(A+B−C)+ei(−A−B+C)+−2i−ei(B+C−A)+ei(−B−C+A)+−2i−ei(C+A−B)+ei(−C−A+B)+−2iei(A+B+C)−−2iei(−A−B−C)=
=sin(A+B−C)+sin(B+C−A)+sin(C+A−B)+−2ieiπ−−2ie−iπ=
=sin(π−2C)+sin(π−2A)+sin(π−2B)=sin2C+sin2A+sin2B
Comments