(a) Let z1 = 1 + √2i and 1 −√2i.
(i) Determine the polar form of z1.
(ii) Determine that the polar form of z2.
(iii) Use the polar forms of z1 and z2 to verify that z1 · z2 = 3
(iv) Use the polar forms of z1 and z2 to verify that −1/3 +2/3√2i =z1/z2
1
Expert's answer
2020-10-14T14:24:00-0400
(a)z1=1+i2,z2=1−i2(i)Polar form ofz1r=1+(2)2=1+2=3θ=arctan(12)=arctan(2)=54.74°∴z1=3(cos(54.74°)+isin(54.74°))(ii)Polar form ofz2r=1+(2)2=1+2=3Sinceθis in the fourth quadrant,θ=360°−arctan(12)=360°−arctan(2)=360°−54.74°=305.26°∴z2=3(cos(305.26°)+isin(305.26°))(iii)z1⋅z2=3(cos(54.74°)+isin(54.74°))×3(cos(305.26°)+isin(305.26°))=3(cos(54.74°)cos(305.26°)+i(cos(54.74°)sin(305.26°)+sin(54.74°)cos(305.26°))−sin(54.74°)sin(305.26°))cos(305.26°)sin(305.26°)=cos(360°−54.74°)=cos(54.74°)=−sin(360°−54.74°)=−sin(54.74°)z1⋅z2=3(cos(54.74°)cos(54.74°)+i(cos(54.74°)⋅−sin(54.74°)+sin(54.74°)cos(54.74°))−sin(54.74°)⋅−sin(54.74°))=3(cos2(54.74°)+sin2(54.74°))=3×1=3(iv)z2z1=3(cos(305.26°)+isin(305.26°))3(cos(54.74°)+isin(54.74°))=(cos(305.26°)+isin(305.26°))(cos(54.74°)+isin(54.74°))×(cos(305.26°)−isin(305.26°))(cos(305.26°)−isin(305.26°))=(cos2(305.26°)+sin2(305.26°)cos(54.74°)cos(305.26°)+(cos2(305.26°)+sin2(305.26°)i(−cos(54.74°)sin(305.26°)+sin(54.74°)cos(305.26°))+(cos2(305.26°)+sin2(305.26°)sin(54.74°)sin(305.26°)=1cos2(54.74°)+i(cos(54.74°)sin(54.74°))+1sin(54.74°)cos(54.74°))−sin2(54.74°)=cos2(54.74°)−sin2(54.74°)+2i(cos(54.74°)sin(54.74°))=cos2(arctan(2))−sin2(arctan(2))+2i(cos(arctan(2))sin(arctan(2)))Lety=cos(arctan(x)),u=arctan(x)y=cosu,x=tanu1+tan2u=sec2u⟹cosu=1+tan2u1∴y=cos(arctan(x))=1+tan2u1=1+x21∴cos2(arctan(2))=1+(2)21=31&sin2(arctan(2))=1−cos2(arctan(2))=1−31=32∴z2z1=31−32+2i(32⋅31)=−31+i322
Comments