Let z=x+iy.z=x+iy.z=x+iy.
13x+13iy=(x+iy+1)(11−3i);13x+13iy=(x+iy+1)(11-3i);13x+13iy=(x+iy+1)(11−3i);
13x+13iy=11x+11iy+11−3ix+3y−3i;13x+13iy=11x+11iy+11-3ix+3y-3i;13x+13iy=11x+11iy+11−3ix+3y−3i;
2x−3y+i(3x+2y)=11−3i;2x-3y+i(3x+2y)=11-3i;2x−3y+i(3x+2y)=11−3i;
{2x−3y=11,3x+2y=−3;\begin{cases} 2x-3y=11, \\ 3x+2y=-3; \end{cases}{2x−3y=11,3x+2y=−3;
{x=11+3y2,32(11+3y)+2y=−3;\begin{cases} x=\frac{11+3y}{2},\\ \frac32(11+3y)+2y=-3; \end{cases}{x=211+3y,23(11+3y)+2y=−3;
16.5+4.5y+2y=−3;16.5+4.5y+2y=-3;16.5+4.5y+2y=−3;
6.5y=−19.5;6.5y=-19.5;6.5y=−19.5;
y=−3;y=-3;y=−3;
x=1.x=1.x=1.
z=1−3i.z=1-3i.z=1−3i.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment