Question #141797
Find the image of the upper half of the xy-plane under the square transformation w = z .
1
Expert's answer
2020-11-02T20:45:30-0500

Let us apply the transformationw=zto the shaded regionThenw=u+jv=x+jyu=x,v=yNow we map pointBontoB(1)B:x=0,y=0,B:u=0,v=0We map the linesABandBContoABandBCin thew-plane.(a)AB:Asx-decreases fromto0,u-decreases fromto0.(b)BC:Asx-increases from0to,u-increases from0to.Finally, we can conclude that the shadedregion which is the upper half of thez-plane maps onto to upper half of thew-plane.\textsf{Let us apply the transformation}\, w = z \\ \textsf{to the shaded region}\\ \textsf{Then}\, w = u + jv = x + jy \\ \therefore u = x, \therefore v = y\\ \textsf{Now we map point}\, B \, \textsf{onto}\, B' \\ (1) B: x = 0, y = 0, \therefore B': u = 0, v = 0 \\ \textsf{We map the lines}\, AB \, \textsf{and} \, BC \\ \textsf{onto}\, A'B' \, \textsf{and} \, B'C' \, \textsf{in the}\, w\textsf{-plane.}\\ (a) AB: \textsf{As} \,x\textsf{-decreases from} -\infty \, \textsf{to}\, 0, u\textsf{-decreases from} \, -\infty\, \textsf{to}\, 0. \\ (b) BC: \textsf{As}\, x\textsf{-increases from}\, 0\, \textsf{to}\, \infty, u\textsf{-increases from} \, 0 \, \textsf{to}\, \infty. \\ \textsf{Finally, we can conclude that the shaded} \\ \textsf{region which is the upper half of the}\\ z\textsf{-plane maps onto to upper half of the}\, w\textsf{-plane.}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS