"\\displaystyle \n\nT(z) = \\frac{z+2}{z - 1}\\\\\n\n|z| = 2 \\implies x^2 + y^2 = 4\\\\\n\n\\begin{aligned}\nT(z) &= \\frac{(x + 2) + jy}{(x - 1) + jy} \\\\&= \\frac{((x+ 2)+ jy))((x - 1) - jy)}{(x - 1)^2 + y^2}\n\\\\&= \\frac{x^2 + x - 2 +jy(x - 1 - x - 2) + y^2}{x^2 + y^2 - 2x + 1} \\\\&= \\frac{x^2 + x - 2 - 3jy + y^2}{x^2 + y^2 - 2x + 1} \\\\&= \\frac{4 + x - 2 - 3jy}{4 + 1 - 2x} = \\frac{2 + x - 3jy}{5 - 2x}\n\\end{aligned}\\\\\n\n\\begin{aligned}\nu &= \\frac{2 + x}{5 - 2x}\\\\\n5u - 2ux &= 2 + x \\\\\nx(2u + 1) &= 5u - 2\\\\\n\\therefore x &= \\frac{5u - 2}{2u + 1}\n\\end{aligned}\\\\\n\nv = \\frac{-3y}{5 - 2x}\\\\\n\n\\textsf{Dividing}\\, v\\, \\textsf{by}\\, u\\\\\n\n\\begin{aligned}\n\\frac{v}{u} &= \\frac{-3y}{2 + x}\\\\\n\\frac{v}{u} &= \\frac{-3y}{2 + \\frac{5u - 2}{2u + 1}}\\\\\n\\frac{v}{u(2u + 1)} &= \\frac{-3y}{2(2u + 1) + 5u - 2}\\\\\n\\frac{v}{u(2u + 1)} &= \\frac{-3y}{4u + 2 + 5u - 2}\\\\\n\\frac{v}{u(2u + 1)} &= \\frac{-3y}{9u}\\\\\n\\frac{v}{(2u + 1)} &= \\frac{-y}{3}\\\\\ny &=\\frac{-3v}{(2u + 1)}\n\\end{aligned}\\\\\n\n\\textsf{Recall that} \\, x^2 + y^2 = 4\\\\\n\n\\therefore\\left(\\frac{5u - 2}{2u + 1}\\right)^2 + \\left(\\frac{-3v}{2u + 1}\\right)^2 = 4\\\\\n\n\n(5u - 2)^2 + (3v)^2 = 4(2u + 1)^2\\\\\n\n25u^2 - 20u + 4 + 9v^2 = 4(4u^2 + 4u + 1)\\\\\n\n\n25u^2 - 20u + 4 + 9v^2 = 16u^2 + 16u + 4\\\\\n\n\n9u^2 - 36u+ 9v^2 = 0\\\\\n\n\nu^2 - 4u+ v^2 = 0\\\\\n\n(u - 2)^2 + (v - 0)^2 = 4\\\\\n\n\n\\therefore \\textsf{The image of the unit circle}\\\\\n|z| = 2 \\, \\textsf{under the linear fractional}\\\\\n\\textsf{transformation is a circle of centre}\\, (2, 0) \\\\\n\\textsf{and a radius}\\, 2\\, \\textsf{units.}"
Comments
Leave a comment