T(z)=z−1z+2∣z∣=2⟹x2+y2=4T(z)=(x−1)+jy(x+2)+jy=(x−1)2+y2((x+2)+jy))((x−1)−jy)=x2+y2−2x+1x2+x−2+jy(x−1−x−2)+y2=x2+y2−2x+1x2+x−2−3jy+y2=4+1−2x4+x−2−3jy=5−2x2+x−3jyu5u−2uxx(2u+1)∴x=5−2x2+x=2+x=5u−2=2u+15u−2v=5−2x−3yDividingvbyuuvuvu(2u+1)vu(2u+1)vu(2u+1)v(2u+1)vy=2+x−3y=2+2u+15u−2−3y=2(2u+1)+5u−2−3y=4u+2+5u−2−3y=9u−3y=3−y=(2u+1)−3vRecall thatx2+y2=4∴(2u+15u−2)2+(2u+1−3v)2=4(5u−2)2+(3v)2=4(2u+1)225u2−20u+4+9v2=4(4u2+4u+1)25u2−20u+4+9v2=16u2+16u+49u2−36u+9v2=0u2−4u+v2=0(u−2)2+(v−0)2=4∴The image of the unit circle∣z∣=2under the linear fractionaltransformation is a circle of centre(2,0)and a radius2units.
Comments