ux=excosy=vy.u_x= e^x cos y=v_y.ux=excosy=vy. Hence v=∫excos y dy=exsin y+ϕ(x)v=\int e^x cos\ y \ dy = e^x sin \ y + \phi(x)v=∫excos y dy=exsin y+ϕ(x). Hence vx=exsiny+ϕ′(x)=−uy=exsin y.v_x= e^x sin y+\phi^{'}(x)=-u_y= e^x sin \ y.vx=exsiny+ϕ′(x)=−uy=exsin y. ⇒ϕ′(x)=0⇒ϕ(x)=c\Rightarrow \phi^{'}(x)=0\Rightarrow \phi(x)=c⇒ϕ′(x)=0⇒ϕ(x)=c , constant.
Hence v(x,y)=exsin y+c.v(x,y)= e^x sin \ y+c.v(x,y)=exsin y+c. Hence f(z)=u+iv=ex(cos y+i sin y)+ic=ex+iy+ic=ez+icf(z)=u+iv=e^x(cos\ y+i \ sin \ y)+ic=e^{x+iy}+ic=e^z+icf(z)=u+iv=ex(cos y+i sin y)+ic=ex+iy+ic=ez+ic .
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment