Answer to Question #142498 in Complex Analysis for Doll

Question #142498
Prove that u(x,y) given by the following is harmonic obtain it's corresponding conjugate and original function f(z)
u(x,y)=e^xCosy
1
Expert's answer
2020-11-05T16:09:00-0500

ux=excosy=vy.u_x= e^x cos y=v_y. Hence v=excos y dy=exsin y+ϕ(x)v=\int e^x cos\ y \ dy = e^x sin \ y + \phi(x). Hence vx=exsiny+ϕ(x)=uy=exsin y.v_x= e^x sin y+\phi^{'}(x)=-u_y= e^x sin \ y. ϕ(x)=0ϕ(x)=c\Rightarrow \phi^{'}(x)=0\Rightarrow \phi(x)=c , constant.

Hence v(x,y)=exsin y+c.v(x,y)= e^x sin \ y+c. Hence f(z)=u+iv=ex(cos y+i sin y)+ic=ex+iy+ic=ez+icf(z)=u+iv=e^x(cos\ y+i \ sin \ y)+ic=e^{x+iy}+ic=e^z+ic .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment