For find tho original function we use the Cauchy-Riemann condition:
"\\frac{\\partial u}{\\partial x} = \\frac{\\partial v}{\\partial y}\\\\\n\\frac{\\partial u}{\\partial y} = -\\frac{\\partial v}{\\partial x} \\\\"
"u = \\frac{x}{x^2 + y^2}"
"\\frac{\\partial u}{\\partial x} = \\frac{y^2 - x^2}{(x^2+y^2)^2}=\\frac{\\partial v}{\\partial y}\\\\\n\\frac{\\partial u}{\\partial y} = -\\frac{2yx}{(x^2+y^2)^2} =-\\frac{\\partial v}{\\partial x}"
"v = \\int\\frac{y^2 - x^2}{(x^2+y^2)^2}dy + \\phi(x) = -\\frac{y}{x^2+y^2} + \\phi(x)"
"\\frac{\\partial v}{\\partial x} = \\frac{2yx}{(x^2+y^2)^2} + \\phi\\prime(x) = \\frac{2yx}{(x^2+y^2)^2}"
"\\phi\\prime(x) = 0 ,\\phi(x) = C"
So: "v(x,y) = -\\frac{y}{x^2+y^2} + C" , and "w(u,v) = \\frac{x}{x^2+y^2} - i\\frac{y}{x^2+y^2}"
Comments
Leave a comment