For find tho original function we use the Cauchy-Riemann condition:
∂x∂u=∂y∂v∂y∂u=−∂x∂v
u=x2+y2x
∂x∂u=(x2+y2)2y2−x2=∂y∂v∂y∂u=−(x2+y2)22yx=−∂x∂v
v=∫(x2+y2)2y2−x2dy+ϕ(x)=−x2+y2y+ϕ(x)
∂x∂v=(x2+y2)22yx+ϕ′(x)=(x2+y2)22yx
ϕ′(x)=0,ϕ(x)=C
So: v(x,y)=−x2+y2y+C , and w(u,v)=x2+y2x−ix2+y2y
Comments