Question #142502
Find the original function without finding the corresponding conjugate
u(x,y)=x/x^2+y^2
1
Expert's answer
2020-11-05T16:05:28-0500

For find tho original function we use the Cauchy-Riemann condition:

ux=vyuy=vx\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}\\ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \\


u=xx2+y2u = \frac{x}{x^2 + y^2}

ux=y2x2(x2+y2)2=vyuy=2yx(x2+y2)2=vx\frac{\partial u}{\partial x} = \frac{y^2 - x^2}{(x^2+y^2)^2}=\frac{\partial v}{\partial y}\\ \frac{\partial u}{\partial y} = -\frac{2yx}{(x^2+y^2)^2} =-\frac{\partial v}{\partial x}


v=y2x2(x2+y2)2dy+ϕ(x)=yx2+y2+ϕ(x)v = \int\frac{y^2 - x^2}{(x^2+y^2)^2}dy + \phi(x) = -\frac{y}{x^2+y^2} + \phi(x)

vx=2yx(x2+y2)2+ϕ(x)=2yx(x2+y2)2\frac{\partial v}{\partial x} = \frac{2yx}{(x^2+y^2)^2} + \phi\prime(x) = \frac{2yx}{(x^2+y^2)^2}

ϕ(x)=0,ϕ(x)=C\phi\prime(x) = 0 ,\phi(x) = C

So: v(x,y)=yx2+y2+Cv(x,y) = -\frac{y}{x^2+y^2} + C , and w(u,v)=xx2+y2iyx2+y2w(u,v) = \frac{x}{x^2+y^2} - i\frac{y}{x^2+y^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS