Question #116965
Given that w denotes either one of the non-real roots of the equation z3 = 1, show that
(a) 1 + w + w2 = 0, and (b) the other non-real root is w2. Show that the non-real roots of the equation 
1 − u u
3 numbers, find A and B.
11. Given that 1, w, w2 are the cube roots of unity, find the equation whose roots are 1/3, 1/(2 + w), 1/(2 + w2).
can be expressed in the form Aw and Bw2, where A and B are real
1
Expert's answer
2020-05-20T20:02:09-0400
z3=1z^3=1z31=0z^3-1=0(z1)(z2+z+1)=0(z-1)(z^2+z+1)=0

z2+z+1=0z^2+ z+1=0


z=1±124(1)22=1±i32z={-1\pm\sqrt{1^2-4(1)^2}\over2}={-1\pm i\sqrt{3}\over2}

Cube Root of Unity Value


w1=1, realw_1=1,\ real

w2=1i32,complexw_2={-1- i\sqrt{3}\over2}, complex

w3=1+i32, complexw_3={-1+ i\sqrt{3}\over2}, \ complex

b)


z3u3=0z^3-u^3=0

z3u3=(zu)(z2+uz+u2)z^3-u^3=(z-u)(z^2+u z+u^2)

Then


(zu)(z2+uz+u2)=0(z-u)(z^2+u z+u^2)=0

z2+uz+u2=0z^2+u z+u^2=0


z=u±u24u22=u(1±i32)z={-u\pm\sqrt{u^2-4u^2}\over2}=u({-1\pm i\sqrt{3}\over2})

z1=uw1=u1=1u+i0, realz_1=u w_1=u\cdot1=1\cdot u+i\cdot0, \ real

z2=uw2=u1i32=12uiu32, complexz_2=u w_2=u\cdot{-1- i\sqrt{3}\over2}=-{1\over 2}u-i\cdot{u\sqrt{3}\over 2},\ complex

z3=uw3=u1+i32=12u+iu32, complexz_3=u w_3=u\cdot{-1+ i\sqrt{3}\over2}=-{1\over 2}u+i\cdot{u\sqrt{3}\over 2},\ complex

11.


w=1i32=>2+w=3i32=>w={-1- i\sqrt{3}\over2}=>2+w={3- i\sqrt{3}\over2}=>

=>12+w=23i3=212(3+i3)=16(3+i3)=>{1\over 2+w}={2\over 3-i\sqrt{3}}={2\over 12}(3+i\sqrt{3})={1\over 6}(3+i\sqrt{3})

w2=1+i32=>2+w2=3+i32=>w_2={-1+ i\sqrt{3}\over2}=>2+w_2={3+ i\sqrt{3}\over2}=>

=>12+w2=23+i3=212(3i3)=16(3i3)=>{1\over 2+w_2}={2\over 3+i\sqrt{3}}={2\over 12}(3-i\sqrt{3})={1\over 6}(3-i\sqrt{3})


(z13)(z16(3+i3))(z16(3i3))=0(z-{1\over 3})\bigg(z-{1\over 6}(3+i\sqrt{3})\bigg)\bigg(z-{1\over 6}(3-i\sqrt{3})\bigg)=0

(z13)(z2z+13)=0(z-{1\over 3})(z^2-z+{1\over 3})=0

z3z2+13z13z2+13z19=0z^3-z^2+{1\over 3}z-{1\over 3}z^2+{1\over 3}z-{1\over 9}=0

z343z2+23z19=0z^3-{4\over 3}z^2+{2\over 3}z-{1\over 9}=0

Or


9z312z2+6z1=09z^3-12z^2+6z-1=0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS