sin(5θ)=sin(2θ+3θ)=sin(2θ)cos(3θ)+sin(3θ)cos(2θ)sin(3θ)=3sin(θ)cos2(θ)–sin3(θ)cos(3θ)=cos3(θ)–3cos(θ)sin2(θ)sin(2θ)=2sin(θ)cos(θ)cos(2θ)=1−sin2(θ)sin(5θ)=2sin(θ)cos(θ)×(cos3(θ)–3cos(θ)sin2(θ))++(3sin(θ)cos2(θ)–sin3(θ))×(1−sin2(θ))==2sin(θ)cos4(θ)−6sin3(θ)cos2(θ)+3sin(θ)cos2(θ)−−3sin3(θ)cos2(θ)−sin3(θ)+sin5(θ)==2sin(θ)(1−sin2(θ))2−6sin3(θ)(1−sin2(θ))+3sin(θ)(1−sin2(θ))−−3sin3(θ)(1−sin2(θ))−sin3(θ)+sin5(θ)==2sin(θ)−4sin3(θ)+2sin5(θ)−6sin3(θ)+6sin5(θ)+3sin(θ)−3sin3(θ)−−3sin3(θ)+3sin5(θ)−sin3(θ)+sin5(θ)==13sin5(θ)−17sin3(θ)+5sin(θ)
cos(5θ)=cos(3θ+2θ)=cos(3θ)cos(2θ)−sin(3θ)sin(2θ)
From the previous paragraph:
sin(3θ)=3sin(θ)cos2(θ)–sin3(θ)cos(3θ)=cos3(θ)–3cos(θ)sin2(θ)sin(2θ)=2sin(θ)cos(θ)cos(2θ)=1−sin2(θ)
So:
cos(5θ)=(cos3(θ)–3cos(θ)sin2(θ))(1−sin2(θ))−−(3sin(θ)cos2(θ)–sin3(θ))×2sin(θ)cos(θ))==cos(θ)(cos2(θ)–3sin2(θ))(1−sin2(θ))−−2sin(θ)cos(θ)(3sin(θ)cos2(θ)–sin3(θ))==cos(θ)((1−4sin2(θ))(1−sin2(θ))−2sin(θ)(3sin(θ)−4sin3(θ))==cos(θ)(1−5sin2(θ)+4sin4(θ)−6sin2(θ)+8sin4(θ))==cos(θ)(1−11sin2(θ)+12sin4(θ))=>cos(θ)cos(5θ)=12sin4(θ)−11sin2(θ)+1
Comments