2020-05-19T09:20:11-04:00
Given that w denotes either one of the non-real roots of the equation z3 = 1, show that
(a) 1 + w + w2 = 0, and (b) the other non-real root is w2. Show that the non-real roots of the equation
1 − u u
3 numbers, find A and B.
11. Given that 1, w, w2 are the cube roots of unity, find the equation whose roots are 1/3, 1/(2 + w), 1/(2 + w2).
can be expressed in the form Aw and Bw2, where A and B are real
1
2020-05-21T17:30:35-0400
a)
z 3 = 1 z^3=1 z 3 = 1 z 3 − 1 = 0 z^3-1=0 z 3 − 1 = 0 ( z − 1 ) ( z 2 + z + 1 ) = 0 (z-1)(z^2+z+1)=0 ( z − 1 ) ( z 2 + z + 1 ) = 0 z 2 + z + 1 = 0 z^2+ z+1=0 z 2 + z + 1 = 0
z = − 1 ± 1 2 − 4 ( 1 ) 2 2 = − 1 ± i 3 2 z={-1\pm\sqrt{1^2-4(1)^2}\over2}={-1\pm i\sqrt{3}\over2} z = 2 − 1 ± 1 2 − 4 ( 1 ) 2 = 2 − 1 ± i 3 Cube Root of Unity Value
w 1 = 1 , r e a l w_1=1,\ real w 1 = 1 , re a l
w 2 = − 1 − i 3 2 , c o m p l e x w_2={-1- i\sqrt{3}\over2}, complex w 2 = 2 − 1 − i 3 , co m pl e x
w 3 = − 1 + i 3 2 , c o m p l e x w_3={-1+ i\sqrt{3}\over2}, \ complex w 3 = 2 − 1 + i 3 , co m pl e x b)
z 3 − u 3 = 0 z^3-u^3=0 z 3 − u 3 = 0 z 3 − u 3 = ( z − u ) ( z 2 + u z + u 2 ) z^3-u^3=(z-u)(z^2+u z+u^2) z 3 − u 3 = ( z − u ) ( z 2 + u z + u 2 ) Then
( z − u ) ( z 2 + u z + u 2 ) = 0 (z-u)(z^2+u z+u^2)=0 ( z − u ) ( z 2 + u z + u 2 ) = 0 z 2 + u z + u 2 = 0 z^2+u z+u^2=0 z 2 + u z + u 2 = 0
z = − u ± u 2 − 4 u 2 2 = u ( − 1 ± i 3 2 ) z={-u\pm\sqrt{u^2-4u^2}\over2}=u({-1\pm i\sqrt{3}\over2}) z = 2 − u ± u 2 − 4 u 2 = u ( 2 − 1 ± i 3 )
z 1 = u w 1 = u ⋅ 1 = 1 ⋅ u + i ⋅ 0 , r e a l z_1=u w_1=u\cdot1=1\cdot u+i\cdot0, \ real z 1 = u w 1 = u ⋅ 1 = 1 ⋅ u + i ⋅ 0 , re a l
z 2 = u w 2 = u ⋅ − 1 − i 3 2 = − 1 2 u − i ⋅ u 3 2 , c o m p l e x z_2=u w_2=u\cdot{-1- i\sqrt{3}\over2}=-{1\over 2}u-i\cdot{u\sqrt{3}\over 2},\ complex z 2 = u w 2 = u ⋅ 2 − 1 − i 3 = − 2 1 u − i ⋅ 2 u 3 , co m pl e x
z 3 = u w 3 = u ⋅ − 1 + i 3 2 = − 1 2 u + i ⋅ u 3 2 , c o m p l e x z_3=u w_3=u\cdot{-1+ i\sqrt{3}\over2}=-{1\over 2}u+i\cdot{u\sqrt{3}\over 2},\ complex z 3 = u w 3 = u ⋅ 2 − 1 + i 3 = − 2 1 u + i ⋅ 2 u 3 , co m pl e x 11.
w = − 1 − i 3 2 = > 2 + w = 3 − i 3 2 = > w={-1- i\sqrt{3}\over2}=>2+w={3- i\sqrt{3}\over2}=> w = 2 − 1 − i 3 => 2 + w = 2 3 − i 3 =>
= > 1 2 + w = 2 3 − i 3 = 2 12 ( 3 + i 3 ) = 1 6 ( 3 + i 3 ) =>{1\over 2+w}={2\over 3-i\sqrt{3}}={2\over 12}(3+i\sqrt{3})={1\over 6}(3+i\sqrt{3}) => 2 + w 1 = 3 − i 3 2 = 12 2 ( 3 + i 3 ) = 6 1 ( 3 + i 3 )
w 2 = − 1 + i 3 2 = > 2 + w 2 = 3 + i 3 2 = > w_2={-1+ i\sqrt{3}\over2}=>2+w_2={3+ i\sqrt{3}\over2}=> w 2 = 2 − 1 + i 3 => 2 + w 2 = 2 3 + i 3 =>
= > 1 2 + w 2 = 2 3 + i 3 = 2 12 ( 3 − i 3 ) = 1 6 ( 3 − i 3 ) =>{1\over 2+w_2}={2\over 3+i\sqrt{3}}={2\over 12}(3-i\sqrt{3})={1\over 6}(3-i\sqrt{3}) => 2 + w 2 1 = 3 + i 3 2 = 12 2 ( 3 − i 3 ) = 6 1 ( 3 − i 3 )
( z − 1 3 ) ( z − 1 6 ( 3 + i 3 ) ) ( z − 1 6 ( 3 − i 3 ) ) = 0 (z-{1\over 3})\bigg(z-{1\over 6}(3+i\sqrt{3})\bigg)\bigg(z-{1\over 6}(3-i\sqrt{3})\bigg)=0 ( z − 3 1 ) ( z − 6 1 ( 3 + i 3 ) ) ( z − 6 1 ( 3 − i 3 ) ) = 0
( z − 1 3 ) ( z 2 − z + 1 3 ) = 0 (z-{1\over 3})(z^2-z+{1\over 3})=0 ( z − 3 1 ) ( z 2 − z + 3 1 ) = 0
z 3 − z 2 + 1 3 z − 1 3 z 2 + 1 3 z − 1 9 = 0 z^3-z^2+{1\over 3}z-{1\over 3}z^2+{1\over 3}z-{1\over 9}=0 z 3 − z 2 + 3 1 z − 3 1 z 2 + 3 1 z − 9 1 = 0
z 3 − 4 3 z 2 + 2 3 z − 1 9 = 0 z^3-{4\over 3}z^2+{2\over 3}z-{1\over 9}=0 z 3 − 3 4 z 2 + 3 2 z − 9 1 = 0 Or
9 z 3 − 12 z 2 + 6 z − 1 = 0 9z^3-12z^2+6z-1=0 9 z 3 − 12 z 2 + 6 z − 1 = 0
Need a fast expert's response?
Submit order
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS !
Comments