a z 3 + b z 2 + c z + d = 0 az^3+bz^2+cz+d=0 a z 3 + b z 2 + cz + d = 0
z 1 = α − β , z 2 = α , z 3 = α + β z_1=\alpha -\beta, \ z_2=\alpha , \ z_3=\alpha+\beta z 1 = α − β , z 2 = α , z 3 = α + β
Vieta's formulas:
{ z 1 + z 2 + z 3 = − b a z 1 z 2 + z 2 z 3 + z 3 z 1 = c a z 1 z 2 z 3 = − d a \begin{cases}
z_1+z_2+z_3=-\frac{b}{a}
\\
z_1 z_2+z_2 z_3+z_3 z_1=\frac{c}{a}
\\
z_1z_2z_3=-\frac{d}{a}
\end{cases} ⎩ ⎨ ⎧ z 1 + z 2 + z 3 = − a b z 1 z 2 + z 2 z 3 + z 3 z 1 = a c z 1 z 2 z 3 = − a d
{ ( α − β ) + α + ( α + β ) = − b a ( α − β ) α + α ( α + β ) + ( α + β ) ( α − β ) = c a α ( α − β ) ( α + β ) = − d a \begin{cases}
(\alpha-\beta )+\alpha +(\alpha +\beta)=-\frac{b}{a}
\\
(\alpha-\beta)\alpha +\alpha (\alpha +\beta)+(\alpha+\beta)(\alpha -\beta)=\frac{c}{a}
\\
\alpha(\alpha-\beta)(\alpha+\beta)=-\frac{d}{a}
\end{cases} ⎩ ⎨ ⎧ ( α − β ) + α + ( α + β ) = − a b ( α − β ) α + α ( α + β ) + ( α + β ) ( α − β ) = a c α ( α − β ) ( α + β ) = − a d
{ b = − 3 α a c = ( 3 α 2 − β 2 ) a d = − ( α 3 − α β 2 ) a \begin{cases}
b=-3\alpha a
\\
c=(3\alpha^2-\beta^2)a
\\
d=-(\alpha^3-\alpha \beta^2)a
\end{cases} ⎩ ⎨ ⎧ b = − 3 α a c = ( 3 α 2 − β 2 ) a d = − ( α 3 − α β 2 ) a
( 2 b 2 − 9 a c ) b + 27 a 2 d = ( 2 ( − 3 α a ) 2 − 9 a ( 3 α 2 − β 2 ) a ) ( − 3 α a ) − 27 a 2 ( α 3 − α β 2 ) a = ( 18 α 2 a 2 − 27 α 2 a 2 + 9 β 2 a 2 ) ( − 3 α a ) − 27 α 3 a 3 + 27 α β 2 a 3 = 27 α 3 a 3 − 27 α β 2 a 3 − 27 α 3 a 3 + 27 α β 2 a 3 = 0 (2b^2-9ac)b+27a^2d=(2(-3\alpha a)^2-9a(3\alpha^2-\beta^2)a)(-3\alpha a)-27a^2(\alpha^3-\alpha \beta^2)a =(18\alpha ^2a^2-27\alpha^2a^2+9\beta ^2 a^2)(-3\alpha a)-27\alpha^3a^3+27\alpha \beta^2 a^3=27\alpha^3a^3 -27\alpha \beta^2a^3 -27\alpha^3a^3+27\alpha \beta^2 a^3=0 ( 2 b 2 − 9 a c ) b + 27 a 2 d = ( 2 ( − 3 α a ) 2 − 9 a ( 3 α 2 − β 2 ) a ) ( − 3 α a ) − 27 a 2 ( α 3 − α β 2 ) a = ( 18 α 2 a 2 − 27 α 2 a 2 + 9 β 2 a 2 ) ( − 3 α a ) − 27 α 3 a 3 + 27 α β 2 a 3 = 27 α 3 a 3 − 27 α β 2 a 3 − 27 α 3 a 3 + 27 α β 2 a 3 = 0
Comments