Question #116859
4. If the roots of the cubic az3 + bz2 + cz +d = 0 form an arithmetic progression α−β, α, α + β, prove that (2b2 − 9ac)b + 27a2d = 0.
1
Expert's answer
2020-05-18T20:10:30-0400

az3+bz2+cz+d=0az^3+bz^2+cz+d=0

z1=αβ, z2=α, z3=α+βz_1=\alpha -\beta, \ z_2=\alpha , \ z_3=\alpha+\beta

Vieta's formulas:

{z1+z2+z3=baz1z2+z2z3+z3z1=caz1z2z3=da\begin{cases} z_1+z_2+z_3=-\frac{b}{a} \\ z_1 z_2+z_2 z_3+z_3 z_1=\frac{c}{a} \\ z_1z_2z_3=-\frac{d}{a} \end{cases}

{(αβ)+α+(α+β)=ba(αβ)α+α(α+β)+(α+β)(αβ)=caα(αβ)(α+β)=da\begin{cases} (\alpha-\beta )+\alpha +(\alpha +\beta)=-\frac{b}{a} \\ (\alpha-\beta)\alpha +\alpha (\alpha +\beta)+(\alpha+\beta)(\alpha -\beta)=\frac{c}{a} \\ \alpha(\alpha-\beta)(\alpha+\beta)=-\frac{d}{a} \end{cases}

{b=3αac=(3α2β2)ad=(α3αβ2)a\begin{cases} b=-3\alpha a \\ c=(3\alpha^2-\beta^2)a \\ d=-(\alpha^3-\alpha \beta^2)a \end{cases}

(2b29ac)b+27a2d=(2(3αa)29a(3α2β2)a)(3αa)27a2(α3αβ2)a=(18α2a227α2a2+9β2a2)(3αa)27α3a3+27αβ2a3=27α3a327αβ2a327α3a3+27αβ2a3=0(2b^2-9ac)b+27a^2d=(2(-3\alpha a)^2-9a(3\alpha^2-\beta^2)a)(-3\alpha a)-27a^2(\alpha^3-\alpha \beta^2)a =(18\alpha ^2a^2-27\alpha^2a^2+9\beta ^2 a^2)(-3\alpha a)-27\alpha^3a^3+27\alpha \beta^2 a^3=27\alpha^3a^3 -27\alpha \beta^2a^3 -27\alpha^3a^3+27\alpha \beta^2 a^3=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS