"az^3+bz^2+cz+d=0"
"z_1=\\alpha -\\beta, \\ z_2=\\alpha , \\ z_3=\\alpha+\\beta"
Vieta's formulas:
"\\begin{cases}\nz_1+z_2+z_3=-\\frac{b}{a}\n\\\\\nz_1 z_2+z_2 z_3+z_3 z_1=\\frac{c}{a}\n\\\\\nz_1z_2z_3=-\\frac{d}{a}\n\n\\end{cases}"
"\\begin{cases}\n(\\alpha-\\beta )+\\alpha +(\\alpha +\\beta)=-\\frac{b}{a}\n\\\\\n(\\alpha-\\beta)\\alpha +\\alpha (\\alpha +\\beta)+(\\alpha+\\beta)(\\alpha -\\beta)=\\frac{c}{a}\n\\\\\n\\alpha(\\alpha-\\beta)(\\alpha+\\beta)=-\\frac{d}{a}\n\n\\end{cases}"
"\\begin{cases}\nb=-3\\alpha a\n\\\\\nc=(3\\alpha^2-\\beta^2)a\n\\\\\nd=-(\\alpha^3-\\alpha \\beta^2)a\n\n\\end{cases}"
"(2b^2-9ac)b+27a^2d=(2(-3\\alpha a)^2-9a(3\\alpha^2-\\beta^2)a)(-3\\alpha a)-27a^2(\\alpha^3-\\alpha \\beta^2)a =(18\\alpha ^2a^2-27\\alpha^2a^2+9\\beta ^2 a^2)(-3\\alpha a)-27\\alpha^3a^3+27\\alpha \\beta^2 a^3=27\\alpha^3a^3 -27\\alpha \\beta^2a^3 -27\\alpha^3a^3+27\\alpha \\beta^2 a^3=0"
Comments
Leave a comment