Question #116817
Express the roots of the equation z3 − α3 = 0 in terms of α and w, where w is
a complex cube root of unity. Use your answer to find the roots of the following
equations in the form a + ib.
1
Expert's answer
2020-05-20T19:10:47-0400

Given,

we have to find the roots of the equation, z3α3=0 in terms ofα and ω.z^3 -\alpha^3=0 \ in \ terms\ of \alpha \ and \ \omega .

We know,

z3α3=(zα)(z2+α2+zα)=0 which implies z=α (a root) and z2+α2+zα=0z^3-\alpha^3 = (z-\alpha)(z^2 + \alpha^2 +z\alpha)=0 \ which \ implies\ z=\alpha\ (a\ root) \ and\ z^2+\alpha^2+z\alpha=0

Now,

z2+α2+zα=z2+2.z.α2+(α2)2+α2(α2)2=0 implies (z+(α2))2+(3α4)2=0z^2+\alpha^2+z\alpha=z^2 +2.z.\frac{\alpha}{2}+(\frac{\alpha}{2})^2+\alpha^2-(\frac{\alpha}{2})^2=0 \ implies\ (z+(\frac{\alpha}{2}))^2+(\frac{3\alpha}{4})^2=0

(z+(α2))=+i3α2(z+(\frac{\alpha}{2}))=\frac{+}{-} \frac{i\sqrt{3}\alpha}{2}

or, z=(α2)+i3α2z=-(\frac{\alpha}{2})\frac{+}{-}\frac{i\sqrt{3}\alpha}{2}

or, z=α((12)+i32)z=\alpha((\frac{-1}{2})\frac{+}{-}\frac{i\sqrt{3}}{2})

or, z=αω and z=αω2 where ω=((12)+i32) and ω2=((12)i32)z=\alpha\omega\ and\ z=\alpha\omega^2\ where \ \omega=((\frac{-1}{2})+\frac{i\sqrt{3}}{2}) \ and \ \omega^2=((\frac{-1}{2})-\frac{i\sqrt{3}}{2})

Thus, the three roots of the above equation are:

in terms of ω\omega :

z=α,αω and αω2z=\alpha,\alpha\omega\ and \ \alpha\omega^2

in terms of a+ib:

z=α,αz=\alpha,\alpha ((12)+i32) and α((12)i32)((\frac{-1}{2})+\frac{i\sqrt{3}}{2}) \ and\ \alpha((\frac{-1}{2})-\frac{i\sqrt{3}}{2}).



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS