Given,
we have to find the roots of the equation, z 3 − α 3 = 0 i n t e r m s o f α a n d ω . z^3 -\alpha^3=0 \ in \ terms\ of \alpha \ and \ \omega . z 3 − α 3 = 0 in t er m s o f α an d ω .
We know,
z 3 − α 3 = ( z − α ) ( z 2 + α 2 + z α ) = 0 w h i c h i m p l i e s z = α ( a r o o t ) a n d z 2 + α 2 + z α = 0 z^3-\alpha^3 = (z-\alpha)(z^2 + \alpha^2 +z\alpha)=0
\ which \ implies\ z=\alpha\ (a\ root) \ and\ z^2+\alpha^2+z\alpha=0 z 3 − α 3 = ( z − α ) ( z 2 + α 2 + z α ) = 0 w hi c h im pl i es z = α ( a roo t ) an d z 2 + α 2 + z α = 0
Now,
z 2 + α 2 + z α = z 2 + 2. z . α 2 + ( α 2 ) 2 + α 2 − ( α 2 ) 2 = 0 i m p l i e s ( z + ( α 2 ) ) 2 + ( 3 α 4 ) 2 = 0 z^2+\alpha^2+z\alpha=z^2 +2.z.\frac{\alpha}{2}+(\frac{\alpha}{2})^2+\alpha^2-(\frac{\alpha}{2})^2=0
\ implies\ (z+(\frac{\alpha}{2}))^2+(\frac{3\alpha}{4})^2=0 z 2 + α 2 + z α = z 2 + 2. z . 2 α + ( 2 α ) 2 + α 2 − ( 2 α ) 2 = 0 im pl i es ( z + ( 2 α ) ) 2 + ( 4 3 α ) 2 = 0
( z + ( α 2 ) ) = + − i 3 α 2 (z+(\frac{\alpha}{2}))=\frac{+}{-} \frac{i\sqrt{3}\alpha}{2} ( z + ( 2 α )) = − + 2 i 3 α
or, z = − ( α 2 ) + − i 3 α 2 z=-(\frac{\alpha}{2})\frac{+}{-}\frac{i\sqrt{3}\alpha}{2} z = − ( 2 α ) − + 2 i 3 α
or, z = α ( ( − 1 2 ) + − i 3 2 ) z=\alpha((\frac{-1}{2})\frac{+}{-}\frac{i\sqrt{3}}{2}) z = α (( 2 − 1 ) − + 2 i 3 )
or, z = α ω a n d z = α ω 2 w h e r e ω = ( ( − 1 2 ) + i 3 2 ) a n d ω 2 = ( ( − 1 2 ) − i 3 2 ) z=\alpha\omega\ and\ z=\alpha\omega^2\ where \ \omega=((\frac{-1}{2})+\frac{i\sqrt{3}}{2}) \ and \ \omega^2=((\frac{-1}{2})-\frac{i\sqrt{3}}{2}) z = α ω an d z = α ω 2 w h ere ω = (( 2 − 1 ) + 2 i 3 ) an d ω 2 = (( 2 − 1 ) − 2 i 3 )
Thus, the three roots of the above equation are:
in terms of ω \omega ω :
z = α , α ω a n d α ω 2 z=\alpha,\alpha\omega\ and \ \alpha\omega^2 z = α , α ω an d α ω 2
in terms of a+ib:
z = α , α z=\alpha,\alpha z = α , α ( ( − 1 2 ) + i 3 2 ) a n d α ( ( − 1 2 ) − i 3 2 ) ((\frac{-1}{2})+\frac{i\sqrt{3}}{2}) \ and\ \alpha((\frac{-1}{2})-\frac{i\sqrt{3}}{2}) (( 2 − 1 ) + 2 i 3 ) an d α (( 2 − 1 ) − 2 i 3 ) .
Comments