Use De Moivre’s theorem: (cosx+isinx)n=cos(nx)+isin(nx)
(a) (cosπ/5+isinπ/5)10=cos(10×π/5)+isin(10×π/5)=cos(2π)+isin(2π)=1
(b) (cosπ/9+isinπ/9)−3=cos(−3×π/9)+isin(−3×π/9)=cos(−π/3)+isin(−π/3)=21−i23
(c) (cos(−π/6)+isin(−π/6))−4=cos(−4×(−π/6))+isin(−4×(−π/6))=cos(2π/3)+isin(2π/3)=−21+i23
Comments
Leave a comment