Use De Moivre’s theorem: ( cos x + i sin x ) n = cos ( n x ) + i sin ( n x ) (\cos x+i \sin x)^n=\cos(nx )+i \sin(nx) ( cos x + i sin x ) n = cos ( n x ) + i sin ( n x )
(a) ( cos π / 5 + i sin π / 5 ) 10 = cos ( 10 × π / 5 ) + i sin ( 10 × π / 5 ) = cos ( 2 π ) + i sin ( 2 π ) = 1 (\cos \pi/5+i \sin \pi/5)^{10}=\cos(10\times \pi/5 )+i \sin(10\times \pi/5)=\cos (2\pi)+i \sin(2\pi)=1 ( cos π /5 + i sin π /5 ) 10 = cos ( 10 × π /5 ) + i sin ( 10 × π /5 ) = cos ( 2 π ) + i sin ( 2 π ) = 1
(b) ( cos π / 9 + i sin π / 9 ) − 3 = cos ( − 3 × π / 9 ) + i sin ( − 3 × π / 9 ) = cos ( − π / 3 ) + i sin ( − π / 3 ) = 1 2 − i 3 2 (\cos \pi/9+i \sin \pi/9)^{-3}=\cos(-3\times \pi/9 )+i \sin(-3\times \pi/9)=\cos (-\pi/3)+i \sin(-\pi/3)=\frac{1}{2}-i \frac{\sqrt 3}{2} ( cos π /9 + i sin π /9 ) − 3 = cos ( − 3 × π /9 ) + i sin ( − 3 × π /9 ) = cos ( − π /3 ) + i sin ( − π /3 ) = 2 1 − i 2 3
(c) ( cos ( − π / 6 ) + i sin ( − π / 6 ) ) − 4 = cos ( − 4 × ( − π / 6 ) ) + i sin ( − 4 × ( − π / 6 ) ) = cos ( 2 π / 3 ) + i sin ( 2 π / 3 ) = − 1 2 + i 3 2 (\cos (-\pi/6)+i \sin (-\pi/6))^{-4}=\cos(-4\times (-\pi/6) )+i \sin(-4\times (-\pi/6))=\cos (2\pi/3)+i \sin(2\pi/3)=-\frac{1}{2}+i \frac{\sqrt 3}{2} ( cos ( − π /6 ) + i sin ( − π /6 ) ) − 4 = cos ( − 4 × ( − π /6 )) + i sin ( − 4 × ( − π /6 )) = cos ( 2 π /3 ) + i sin ( 2 π /3 ) = − 2 1 + i 2 3
Comments