Answer to Question #116824 in Complex Analysis for desmond

Question #116824
Use De Moivre’s theorem to simplify the following
(a) (cos π/5+i sin π/5)10, (b) (cos π/9+i sin π/9)−3, (c) {cos(−π/6) + i sin(−π/6)}−4
1
Expert's answer
2020-05-25T20:28:50-0400

Use De Moivre’s theorem: (cosx+isinx)n=cos(nx)+isin(nx)(\cos x+i \sin x)^n=\cos(nx )+i \sin(nx)


(a) (cosπ/5+isinπ/5)10=cos(10×π/5)+isin(10×π/5)=cos(2π)+isin(2π)=1(\cos \pi/5+i \sin \pi/5)^{10}=\cos(10\times \pi/5 )+i \sin(10\times \pi/5)=\cos (2\pi)+i \sin(2\pi)=1


(b) (cosπ/9+isinπ/9)3=cos(3×π/9)+isin(3×π/9)=cos(π/3)+isin(π/3)=12i32(\cos \pi/9+i \sin \pi/9)^{-3}=\cos(-3\times \pi/9 )+i \sin(-3\times \pi/9)=\cos (-\pi/3)+i \sin(-\pi/3)=\frac{1}{2}-i \frac{\sqrt 3}{2}


(c) (cos(π/6)+isin(π/6))4=cos(4×(π/6))+isin(4×(π/6))=cos(2π/3)+isin(2π/3)=12+i32(\cos (-\pi/6)+i \sin (-\pi/6))^{-4}=\cos(-4\times (-\pi/6) )+i \sin(-4\times (-\pi/6))=\cos (2\pi/3)+i \sin(2\pi/3)=-\frac{1}{2}+i \frac{\sqrt 3}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment