in terms of complex numbers
let "z=\\cos\\theta+i\\sin\\theta"
then
"2\\cos\\theta=z+\\frac{1}{z}\\\\2i\\sin\\theta=z-\\frac{1}{z}"
then
"(2\\cos\\theta)^{3}(2i\\sin\\theta)^{4}=(z+\\frac{1}{z})^{3}(z-\\frac{1}{z})^{4}\\\\128\\cos^{3}\\theta\\sin^{4}\\theta=(z-\\frac{1}{z})(z^{2}-\\frac{1}{z^{2}})^{3}\\\\128\\cos^{3}\\theta\\sin^{4}\\theta=(z-\\frac{1}{z})(z^{6}-3z^{2}+\\frac{3}{z^{2}}-\\frac{1}{z^{6}})\\\\128\\cos^{3}\\theta\\sin^{4}\\theta=(z^{7}+\\frac{1}{z^{7}})-(z^{5}+\\frac{1}{z^{5}})-3(z^{3}+\\frac{1}{z^{3}})+3(z+\\frac{1}{z})"
substituting back:
"128\\cos^{3}\\theta\\sin^{4}\\theta=2\\cos7\\theta-2\\cos5\\theta-3(2\\cos3\\theta)+3(2\\cos\\theta)"
dividing through by 128
"\\\\\\cos^{3}\\theta\\sin^{4}\\theta=\\frac{1}{64}[\\cos7\\theta-\\cos5\\theta-3\\cos3\\theta+3\\cos\\theta]"
"\\cos^{3}\\theta\\sin^{4}\\theta=\\frac{1}{64}[3\\cos\\theta-3\\cos3\\theta-\\cos5\\theta+\\cos7\\theta]"
Comments
Leave a comment