Let
"\\theta=\\pi\/5, =>5\\theta=\\pi.\\\\\n3\\theta=\\pi-2\\theta. \\\\" Therefore,
"\\text{sin}(3\\theta)=\\text{sin}(\\pi-2\\theta)=\\text{sin}(2\\theta)" if "\\theta<90."
Next,
"\\text{sin}3\\theta=\\text{sin}2\\theta,\\\\\n3\\text{sin}\\theta-4\\text{sin}^3\\theta=2\\text{sin}\\theta\\text{cos}\\theta\\space||\\cdot\\frac{1}{\\text{sin}\\theta},\\\\\n3-4\\text{sin}^2\\theta=2\\text{cos}\\theta,\\\\\n3-4(1-\\text{cos}^2\\theta)=2\\text{cos}\\theta,\\\\\n4\\text{cos}^2\\theta-2\\text{cos}\\theta-1=0." We notice that this is a quadratic equation where cos theta is like a variable:
"\\text{cos}\\theta=\\frac{1\\pm\\sqrt5}{4}," we take only positive root because theta cannot give negative cosine,
"\\text{cos}\\theta=\\text{cos}\\frac{\\pi}{5}=\\frac{1+\\sqrt5}{4},\\\\\n\\text{sin}\\theta=\\text{sin}\\frac{\\pi}{5}=\\sqrt{1-\\text{cos}^2\\theta}=\\frac{\\sqrt{10-2\\sqrt5}}{4}.\\\\\n\\text{sin}\\frac{2\\pi}{5}=\\text{sin}(2\\theta)=2\\text{sin}\\theta\\text{cos}\\theta=\\\\\n=2\\cdot\\frac{\\sqrt{10-2\\sqrt5}}{4}\\cdot\\frac{1+\\sqrt5}{4}\n=\\frac{\\sqrt{{10+2\\sqrt5}}}{4}."
(a)
"z^n+z^{-n}=(\\text{cos}\\theta+i\\text{sin}\\theta)^n+(\\text{cos}\\theta+i\\text{sin}\\theta)^{-n},\\\\" according to de Moivre theorem this is
"\\text{cos}(n\\theta)+i\\text{sin}(n\\theta)+\\text{cos}(-n\\theta)+i\\text{sin}(-n\\theta)=\\\\\n=\\text{cos}(n\\theta)+i\\text{sin}(n\\theta)+\\text{cos}(-n\\theta)-i\\text{sin}(n\\theta)=\\\\\n=2\\text{cos}(n\\theta)."
Comments
Leave a comment