Obtain the 6th roots of -7 , and represent them in an Argand diagram.
"z=-7"
"x=Re(z)=-7"
"y=Im(z)=0"
"|z|=\\sqrt{x^2+y^2}=7"
"\\phi =arg(z)=\\pi-arctan(y\/|x|)=\\pi-arctan(0\/7)=\\pi-0=\\pi"
"z=7(cos\\pi+isin\\pi)"
To find the 6th roots we use this formula
"z_k=\\sqrt[6]{z}=\\sqrt[6]{|z|}(cos {\\frac {\\phi+2\\pi k} 6}+isin{\\frac {\\phi+2\\pi k} 6}), k=0,1,2,3,4,5"
So, let's find all "z_k"
"z_0=\\sqrt[6]{7}(cos {\\frac {\\pi} 6}+isin{\\frac {\\pi} 6})"
"z_1=\\sqrt[6]{7}(cos {\\frac {\\pi} 2}+isin{\\frac {\\pi} 2})"
"z_2=\\sqrt[6]{7}(cos {\\frac {5\\pi} 6}+isin{\\frac {5\\pi} 6})"
"z_3=\\sqrt[6]{7}(cos {\\frac {7\\pi} 6}+isin{\\frac {7\\pi} 6})"
"z_4=\\sqrt[6]{7}(cos {\\frac {3\\pi} 2}+isin{\\frac {3\\pi} 2})"
"z_5=\\sqrt[6]{7}(cos {\\frac {11\\pi} 6}+isin{\\frac {11\\pi} 6})"
Now, let's plot all roots on Argand diagram
Comments
Leave a comment