Answer to Question #102647 in Complex Analysis for BIVEK SAH

Question #102647
Obtain the Laurent series expansion of the function
e^z/(z-2)^2
about the singularity
z =2
1
Expert's answer
2020-02-20T08:26:54-0500

Obtain the Laurent series expansion of the function

e z/(z-2)2

about the singularity

z =2

Solution:

ez(z2)2=e2eze2(z2)2{e^z\above{2pt}(z-2)^2}=e^2 {e^z e^{-2}\above{2pt}(z-2)^2 }.

Recall that

e z=n=0\displaystyle\sum_{n=0}^∞ znn!{z^n\above{2pt} n!} for |z|<∞.

Using this we obtain the Laurent series expansion for (ez2)=n=0(z2)nn!\left(e^{\smash{z-2}}\right)=\displaystyle\sum_{n=0}^∞ {(z-2)^n\above{2pt} n!}

for |z-2|<∞.Thus,

ez(z2)2=e21(z2)2n=0(z2)nn!{e^z\above{2pt} (z-2)^2}=e^2 {1 \above{2pt} (z-2)^2} \displaystyle\sum_{n=0}^∞ {(z-2)^n \above{2pt} n!}

= e2n=0(z2)nn!e^2\displaystyle\sum_{n=0}^∞ {(z-2)^n\above{2pt} n!} (z2)2n!{\left(z-2^{\smash{}}\right)^{-2} \above{2pt} n!}

=e2[1(z2)2+1z2+n=2(z2)n2n!]e^2 [{1 \above{2pt} (z-2)^2}+{1\above{2pt} z-2}+\displaystyle\sum_{n=2}^∞ { (z-2)^{n-2}\above{2pt} n!}]

= e2[n=0(z2)n(n+2)!+1z2+1(z2)2]e^2 [\displaystyle\sum_{n=0}^∞ {(z-2)^n \above{2pt} (n+2)!}+{1 \above{2pt} z-2}+{1 \above{2pt} (z-2)^2}]




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment