Obtain the Laurent series expansion of the function
e z/(z-2)2
about the singularity
z =2
Solution:
(z−2)2ez=e2(z−2)2eze−2.
Recall that
e z=n=0∑∞ n!zn for |z|<∞.
Using this we obtain the Laurent series expansion for (ez−2)=n=0∑∞n!(z−2)n
for |z-2|<∞.Thus,
(z−2)2ez=e2(z−2)21n=0∑∞n!(z−2)n
= e2n=0∑∞n!(z−2)n n!(z−2)−2
=e2[(z−2)21+z−21+n=2∑∞n!(z−2)n−2]
= e2[n=0∑∞(n+2)!(z−2)n+z−21+(z−2)21]
Comments
Leave a comment