1) Let a < 0 a<0 a < 0 and a a a is not a complex number.
If n n n is an odd number, then there is one and only one real number x x x such that x n = a x^n = a x n = a . This number is x = a n x = \sqrt[n]{a} x = n a and is called the root of an odd degree n n n from a negative number a a a .
So, − 1 5 = ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) 5 = ( − 1 ) 5 5 = − 1. \sqrt[5]{-1} = \sqrt[5]{(-1)*(-1)*(-1)*(-1)*(-1)}=\sqrt[5]{(-1)^5} = -1. 5 − 1 = 5 ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) ∗ ( − 1 ) = 5 ( − 1 ) 5 = − 1.
2) Let a ∈ C a \in\Complex a ∈ C (complex number) and a = i 2 a=i^2 a = i 2
Find the trigonometric form of a complex number
x = R e ( a ) = − 1 , y = I m ( a ) = 0 x=Re(a)=-1, y=Im(a)=0 x = R e ( a ) = − 1 , y = I m ( a ) = 0 .
x < 0 , y ≥ 0 ⟹ a r g ( a ) = ϕ = π − arctan ( y ∣ x ∣ ) = π − 0 = π x<0,y\geq0\implies arg(a)=\phi=\pi-\arctan(\cfrac{y}{\vert x \vert})=\pi -0=\pi x < 0 , y ≥ 0 ⟹ a r g ( a ) = ϕ = π − arctan ( ∣ x ∣ y ) = π − 0 = π .
Thus, the trigonometric form of the complex number a = i 2 a=i^2 a = i 2 is a = cos ( π ) + i sin ( π ) a=\cos(\pi)+i\sin(\pi) a = cos ( π ) + i sin ( π ) .
The fifth roots are a k = a 5 = ∣ a ∣ 5 ( cos ϕ + 2 π k 5 + i sin ϕ + 2 π k 5 ) , k = 0 , 1 , 2 , 3 , 4 a_k = \sqrt[5]{a}=\sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi k}{5}+i\sin\cfrac{\phi+2\pi k}{5} ), k=0,1,2,3,4 a k = 5 a = 5 ∣ a ∣ ( cos 5 ϕ + 2 πk + i sin 5 ϕ + 2 πk ) , k = 0 , 1 , 2 , 3 , 4 .
k = 0 ⟹ a 0 = ∣ a ∣ 5 ( cos ϕ + 2 π ∗ 0 5 + i sin ϕ + 2 π ∗ 0 5 ) = cos π 5 + i sin π 5 = c o s 36 ° + i sin 36 ° = 0.809017 + 0.587785 i k=0\implies a_0 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *0}{5}+i\sin\cfrac{\phi+2\pi *0}{5} )=\cos\cfrac{\pi}{5}+i\sin\cfrac{\pi}{5}=cos36\degree+i\sin36\degree = 0.809017+0.587785i k = 0 ⟹ a 0 = 5 ∣ a ∣ ( cos 5 ϕ + 2 π ∗ 0 + i sin 5 ϕ + 2 π ∗ 0 ) = cos 5 π + i sin 5 π = cos 36° + i sin 36° = 0.809017 + 0.587785 i ,
k = 1 ⟹ a 1 = ∣ a ∣ 5 ( cos ϕ + 2 π ∗ 1 5 + i sin ϕ + 2 π ∗ 1 5 ) = cos 3 π 5 + i sin 3 π 5 = c o s 108 ° + i sin 108 ° = − 0.309017 + 0.951057 i k=1\implies a_1 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *1}{5}+i\sin\cfrac{\phi+2\pi *1}{5} )=\cos\cfrac{3\pi}{5}+i\sin\cfrac{3\pi}{5}=cos108\degree+i\sin108\degree=-0.309017+0.951057i k = 1 ⟹ a 1 = 5 ∣ a ∣ ( cos 5 ϕ + 2 π ∗ 1 + i sin 5 ϕ + 2 π ∗ 1 ) = cos 5 3 π + i sin 5 3 π = cos 108° + i sin 108° = − 0.309017 + 0.951057 i ,
k = 2 ⟹ a 2 = ∣ a ∣ 5 ( cos ϕ + 2 π ∗ 2 5 + i sin ϕ + 2 π ∗ 2 5 ) = cos 5 π 5 + i sin 5 π 5 = cos π + i sin π = − 1 k=2\implies a_2 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *2}{5}+i\sin\cfrac{\phi+2\pi *2}{5} )=\cos\cfrac{5\pi}{5}+i\sin\cfrac{5\pi}{5}=\cos\pi +i\sin\pi = -1 k = 2 ⟹ a 2 = 5 ∣ a ∣ ( cos 5 ϕ + 2 π ∗ 2 + i sin 5 ϕ + 2 π ∗ 2 ) = cos 5 5 π + i sin 5 5 π = cos π + i sin π = − 1 ,
k = 3 ⟹ a 3 = ∣ a ∣ 5 ( cos ϕ + 2 π ∗ 3 5 + i sin ϕ + 2 π ∗ 3 5 ) = cos 7 π 5 + i sin 7 π 5 = c o s 252 ° + i sin 252 ° = − 0.309017 − 0.951057 i k=3\implies a_3 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *3}{5}+i\sin\cfrac{\phi+2\pi *3}{5} )=\cos\cfrac{7\pi}{5}+i\sin\cfrac{7\pi}{5}=cos252\degree+i\sin252\degree=-0.309017-0.951057i k = 3 ⟹ a 3 = 5 ∣ a ∣ ( cos 5 ϕ + 2 π ∗ 3 + i sin 5 ϕ + 2 π ∗ 3 ) = cos 5 7 π + i sin 5 7 π = cos 252° + i sin 252° = − 0.309017 − 0.951057 i ,
k = 4 ⟹ a 4 = ∣ a ∣ 5 ( cos ϕ + 2 π ∗ 4 5 + i sin ϕ + 2 π ∗ 4 5 ) = cos 9 π 5 + i sin 9 π 5 = c o s 324 ° + i sin 324 ° = 0.809017 − 0.587785 i k=4\implies a_4 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *4}{5}+i\sin\cfrac{\phi+2\pi *4}{5} )=\cos\cfrac{9\pi}{5}+i\sin\cfrac{9\pi}{5}=cos324\degree+i\sin324\degree=0.809017-0.587785i k = 4 ⟹ a 4 = 5 ∣ a ∣ ( cos 5 ϕ + 2 π ∗ 4 + i sin 5 ϕ + 2 π ∗ 4 ) = cos 5 9 π + i sin 5 9 π = cos 324° + i sin 324° = 0.809017 − 0.587785 i
For evaluation was used cosine and sine tables (https://onlinemschool.com/math/formula/cosine_table/ , https://onlinemschool.com/math/formula/sine_table/ ).
Answer: 0.809017 ± 0.587785 i , − 0.309017 ± 0.951057 i , − 1. 0.809017\pm0.587785i, -0.309017\pm0.951057i, -1. 0.809017 ± 0.587785 i , − 0.309017 ± 0.951057 i , − 1.
Comments