Question #96508
Find the fifth root of -1
1
Expert's answer
2019-10-22T06:55:01-0400

1) Let a<0a<0 and aa is not a complex number.

If nn is an odd number, then there is one and only one real number xx such that xn=ax^n = a. This number is x=anx = \sqrt[n]{a} and is called the root of an odd degree nn from a negative number aa.

So, 15=(1)(1)(1)(1)(1)5=(1)55=1.\sqrt[5]{-1} = \sqrt[5]{(-1)*(-1)*(-1)*(-1)*(-1)}=\sqrt[5]{(-1)^5} = -1.


2) Let aCa \in\Complex (complex number) and a=i2a=i^2

Find the trigonometric form of a complex number

x=Re(a)=1,y=Im(a)=0x=Re(a)=-1, y=Im(a)=0.

x<0,y0    arg(a)=ϕ=πarctan(yx)=π0=πx<0,y\geq0\implies arg(a)=\phi=\pi-\arctan(\cfrac{y}{\vert x \vert})=\pi -0=\pi.

Thus, the trigonometric form of the complex number a=i2a=i^2 is a=cos(π)+isin(π)a=\cos(\pi)+i\sin(\pi).

The fifth roots are ak=a5=a5(cosϕ+2πk5+isinϕ+2πk5),k=0,1,2,3,4a_k = \sqrt[5]{a}=\sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi k}{5}+i\sin\cfrac{\phi+2\pi k}{5} ), k=0,1,2,3,4.

k=0    a0=a5(cosϕ+2π05+isinϕ+2π05)=cosπ5+isinπ5=cos36°+isin36°=0.809017+0.587785ik=0\implies a_0 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *0}{5}+i\sin\cfrac{\phi+2\pi *0}{5} )=\cos\cfrac{\pi}{5}+i\sin\cfrac{\pi}{5}=cos36\degree+i\sin36\degree = 0.809017+0.587785i ,

k=1    a1=a5(cosϕ+2π15+isinϕ+2π15)=cos3π5+isin3π5=cos108°+isin108°=0.309017+0.951057ik=1\implies a_1 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *1}{5}+i\sin\cfrac{\phi+2\pi *1}{5} )=\cos\cfrac{3\pi}{5}+i\sin\cfrac{3\pi}{5}=cos108\degree+i\sin108\degree=-0.309017+0.951057i ,

k=2    a2=a5(cosϕ+2π25+isinϕ+2π25)=cos5π5+isin5π5=cosπ+isinπ=1k=2\implies a_2 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *2}{5}+i\sin\cfrac{\phi+2\pi *2}{5} )=\cos\cfrac{5\pi}{5}+i\sin\cfrac{5\pi}{5}=\cos\pi +i\sin\pi = -1 ,

k=3    a3=a5(cosϕ+2π35+isinϕ+2π35)=cos7π5+isin7π5=cos252°+isin252°=0.3090170.951057ik=3\implies a_3 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *3}{5}+i\sin\cfrac{\phi+2\pi *3}{5} )=\cos\cfrac{7\pi}{5}+i\sin\cfrac{7\pi}{5}=cos252\degree+i\sin252\degree=-0.309017-0.951057i ,

k=4    a4=a5(cosϕ+2π45+isinϕ+2π45)=cos9π5+isin9π5=cos324°+isin324°=0.8090170.587785ik=4\implies a_4 = \sqrt[5]{\vert a \vert}(\cos\cfrac{\phi+2\pi *4}{5}+i\sin\cfrac{\phi+2\pi *4}{5} )=\cos\cfrac{9\pi}{5}+i\sin\cfrac{9\pi}{5}=cos324\degree+i\sin324\degree=0.809017-0.587785i

For evaluation was used cosine and sine tables (https://onlinemschool.com/math/formula/cosine_table/ , https://onlinemschool.com/math/formula/sine_table/ ).


Answer: 0.809017±0.587785i,0.309017±0.951057i,1.0.809017\pm0.587785i, -0.309017\pm0.951057i, -1.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS