Question #93683
Determine the residue of e^zt/(z-2)^3
1
Expert's answer
2019-09-03T13:29:05-0400

The functionf(z)=ezt/(z2)3f(z)=e^zt/(z-2)^3 has only two special points: 2, \infin (f has a singularity at z = 2, z=\infin only). Therefore Res(2,f)=Res(,f)Res(2,f)=-Res(\infin,f).

Res(2,f)=c1 Laurent’s coefficient.Res(2,f)=c_{-1} -\text{ Laurent's coefficient}.

ez=e2+e21!(z2)+e22!(z2)2+...e^z=e^2+\frac{e^2}{1!}(z-2)+\frac{e^2}{2!}(z-2)^2+...

Therefore Laurent's series for f is

f(z)=t(+e22!(z2)1+...)f(z)=t(… +\frac{e^2}{2!}(z-2)^{-1}+...).

Then

Res(2,f)=te22,Res(,f)=te22.Res(2,f)=t\frac{e^2}{2}, Res(\infin,f)=-t\frac{e^2}{2}.

Finally, if z is a non singularity point for f, then Res(z,f)=0.Res(z,f)=0.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS