Answer to Question #93684 in Complex Analysis for Edward

Question #93684
U(x,y)+iv(x,y) a. Z^2+2iz b. e^z2 c. In(1+z)
1
Expert's answer
2019-09-06T09:52:24-0400

a)

z2=(x+iy)2=x2y2+2ixyz^2=(x+iy)^2=x^2-y^2+2ixy

2iz=2i(x+iy)=2y+2ix2iz=2i(x+iy)=-2y+2ix

z2+2iz=x2y22y+2ixy+2ix(x2y22y)+i(2x+2xy)z^2+2iz=x^2-y^2-2y+2ixy+2ix-(x^2-y^2-2y)+i(2x+2xy)

U=x2y22y;V=2x+2xyU=x^2-y^2-2y;\quad V=2x+2xy

b)

ez2=e(x+iy)2=ex2y2+2ixy=ex2y2e2ixy=ex2y2(cos(2xy)+isin(2xy))e^{z^2}=e^{(x+iy)^2}=e^{x^2-y^2+2ixy}=e^{x^2-y^2}e^{2ixy}=e^{x^2-y^2}(\cos(2xy)+i\sin(2xy))

U=ex2y2cos(2xy);V=ex2y2sin(2xy)U=e^{x^2-y^2}\cos(2xy);\quad V=e^{x^2-y^2}\sin(2xy)

c)

ln(1+z)=ln(1+x+iy)ln(1+z)=ln(1+x+iy)

lnz=lnz+i(arg(z)+2πk)lnz=ln|z|+i(\arg(z)+2\pi k)

z+1=(x+1)2+y2|z+1|=\sqrt{(x+1)^2+y^2}

arg(z+1)=arctanyx+1\arg(z+1)=\arctan\frac{y}{x+1}

ln(z+1)=ln(x+1)2+y2+i(arctanyx+1+2πk)ln(z+1)=ln\sqrt{(x+1)^2+y^2}+i(\arctan\frac{y}{x+1}+2\pi k)

U=ln(x+1)2+y2;V=arctanyx+1+2πkU=ln\sqrt{(x+1)^2+y^2} ;\quad V=\arctan\frac{y}{x+1}+2\pi k


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment