"a)\n\\newline\nf(z)=2z+3. \n\\newline\nz=x+iy=(2t+1)+i(4t^2 -t-2), 0\\le t \\le 1.\n\\newline\nz'(t)=2+i(8t-1), 0\\le t \\le 1."
"\\newline\n\\int_{1-2i}^{3+i}f(z)dz=\\int_{0}^{1}f(z(t))z'(t)dt=\n\\newline"
"=\\int_0^1(2(2t+1+i(4t^2-t-2)))(2+i(8t-1))dt=\n\\newline\n=\\int_0^1(4t+2+i(8t^2-2t-4))(2+i(8t-1))dt=\n\\newline"
"=-\\frac{64}{4}+\\frac{24}{3}+\\frac{38}{2}+\n\\newline\n+i(\\frac{48}{3}+\\frac{8}{2}-10)=\n\\newline\n=-16+8+19+i(16+4-10)=11+10i.\n\\newline\nb)\n\\newline"
"\\newline\n1\\le t\\le 3, y(t)=kt+b\n\\newline\ny(1)=k+b=-2,y(3)=3k+b=1,\n\\newline\n 2k=3, k=\\frac{3}{2}\n\\newline\nb=-2-\\frac{3}{2}=-\\frac{7}{2}\n\\newline"
"\\int_{1-2i}^{3+i}2z+3 dz=\n\\newline\n=\\int_1^3((2(t+(\\frac{3}{2}t-\\frac{7}{2})i)+3)(1+\\frac{3}{2}i)dt=\n\\newline\n=\\int_1^3(2t+3t-7i+3)(1+\\frac{3}{2}i)dt=\n\\newline\n=\\int_1^3(5t+3-7i)(1+\\frac{3}{2}i)dt=\n\\newline\n=\\int_1^3(5t+3+\\frac{21}{2})+i(-7+\\frac{15}{2}t+\\frac{9}{2})dt=\n\\newline"
"=(\\frac{5}{2}t^2+\\frac{27}{2}t+\n\\newline\n+i(\\frac{15}{4}t^2-\\frac{5}{2}t))_1^3=\n\\newline\n=\\frac{5}{2}3^2+\\frac{27}{2}*3+\n\\newline\n+i(\\frac{15}{4}3^2-\\frac{5}{2}*3)-\n\\newline\n-\\frac{5}{2}-\\frac{27}{2}-\n\\newline\n-i(\\frac{15}{4}-\\frac{5}{2})=\n\\newline\n=\\frac{5}{2}*8+\\frac{27}{2}*2+\n+\\newline\ni(\\frac{15}{4}*8-\\frac{5}{2}*2)=20+27+i(30-5)=47+25i"
Comments
Leave a comment