Question #93686
Evaluate the integration of (2z+3)dz from 1-2i to 3+i. a. along the path x=2t+1, y=4t^2-t-2, 0<=t<=1. b.along the strightline joining 1-2i and 3+i
1
Expert's answer
2019-09-05T08:54:47-0400

a)f(z)=2z+3.z=x+iy=(2t+1)+i(4t2t2),0t1.z(t)=2+i(8t1),0t1.a) \newline f(z)=2z+3. \newline z=x+iy=(2t+1)+i(4t^2 -t-2), 0\le t \le 1. \newline z'(t)=2+i(8t-1), 0\le t \le 1.

12i3+if(z)dz=01f(z(t))z(t)dt=\newline \int_{1-2i}^{3+i}f(z)dz=\int_{0}^{1}f(z(t))z'(t)dt= \newline

=01(2(2t+1+i(4t2t2)))(2+i(8t1))dt==01(4t+2+i(8t22t4))(2+i(8t1))dt==\int_0^1(2(2t+1+i(4t^2-t-2)))(2+i(8t-1))dt= \newline =\int_0^1(4t+2+i(8t^2-2t-4))(2+i(8t-1))dt= \newline

=644+243+382++i(483+8210)==16+8+19+i(16+410)=11+10i.b)=-\frac{64}{4}+\frac{24}{3}+\frac{38}{2}+ \newline +i(\frac{48}{3}+\frac{8}{2}-10)= \newline =-16+8+19+i(16+4-10)=11+10i. \newline b) \newline

1t3,y(t)=kt+by(1)=k+b=2,y(3)=3k+b=1,2k=3,k=32b=232=72\newline 1\le t\le 3, y(t)=kt+b \newline y(1)=k+b=-2,y(3)=3k+b=1, \newline 2k=3, k=\frac{3}{2} \newline b=-2-\frac{3}{2}=-\frac{7}{2} \newline

12i3+i2z+3dz==13((2(t+(32t72)i)+3)(1+32i)dt==13(2t+3t7i+3)(1+32i)dt==13(5t+37i)(1+32i)dt==13(5t+3+212)+i(7+152t+92)dt=\int_{1-2i}^{3+i}2z+3 dz= \newline =\int_1^3((2(t+(\frac{3}{2}t-\frac{7}{2})i)+3)(1+\frac{3}{2}i)dt= \newline =\int_1^3(2t+3t-7i+3)(1+\frac{3}{2}i)dt= \newline =\int_1^3(5t+3-7i)(1+\frac{3}{2}i)dt= \newline =\int_1^3(5t+3+\frac{21}{2})+i(-7+\frac{15}{2}t+\frac{9}{2})dt= \newline


=(52t2+272t++i(154t252t))13==5232+2723++i(15432523)52272i(15452)==528+2722++i(1548522)=20+27+i(305)=47+25i=(\frac{5}{2}t^2+\frac{27}{2}t+ \newline +i(\frac{15}{4}t^2-\frac{5}{2}t))_1^3= \newline =\frac{5}{2}3^2+\frac{27}{2}*3+ \newline +i(\frac{15}{4}3^2-\frac{5}{2}*3)- \newline -\frac{5}{2}-\frac{27}{2}- \newline -i(\frac{15}{4}-\frac{5}{2})= \newline =\frac{5}{2}*8+\frac{27}{2}*2+ +\newline i(\frac{15}{4}*8-\frac{5}{2}*2)=20+27+i(30-5)=47+25i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS