a)f(z)=2z+3.z=x+iy=(2t+1)+i(4t2−t−2),0≤t≤1.z′(t)=2+i(8t−1),0≤t≤1.
∫1−2i3+if(z)dz=∫01f(z(t))z′(t)dt=
=∫01(2(2t+1+i(4t2−t−2)))(2+i(8t−1))dt==∫01(4t+2+i(8t2−2t−4))(2+i(8t−1))dt=
=−464+324+238++i(348+28−10)==−16+8+19+i(16+4−10)=11+10i.b)
1≤t≤3,y(t)=kt+by(1)=k+b=−2,y(3)=3k+b=1,2k=3,k=23b=−2−23=−27
∫1−2i3+i2z+3dz==∫13((2(t+(23t−27)i)+3)(1+23i)dt==∫13(2t+3t−7i+3)(1+23i)dt==∫13(5t+3−7i)(1+23i)dt==∫13(5t+3+221)+i(−7+215t+29)dt=
=(25t2+227t++i(415t2−25t))13==2532+227∗3++i(41532−25∗3)−−25−227−−i(415−25)==25∗8+227∗2++i(415∗8−25∗2)=20+27+i(30−5)=47+25i
Comments