"\\intop_0^\\infin\\frac{1}{1+x^2}dx=\\frac{\\pi}{2}"
The integrand is even, so the integral can be replaced with
"\\intop_0^\\infin\\frac{1}{1+x^2}dx=\\frac{1}{2}\\intop_{-\\infin}^\\infin\\frac{1}{1+x^2}dx"
We use the formula:
"\\oint_Cf(z)dz=2\\pi i\\sum Res{f(z)}"
Find the singular point(s):
"f(z)=\\frac{1}{1+z^2}=\\frac{1}{(z-i)(z+i)}" "z=i" is a singular point located in the upper complex half-plane.
"Res_{z=i}f(z)=\\lim_{z\\rightarrow i}f(z)(z-i)=\\lim_{z\\rightarrow i}\\frac{1}{(z+i)(z-i)}(z-i)=\\lim_{z\\rightarrow i}\\frac{1}{z+i}=\\frac{1}{2i}"
"\\intop_{-\\infin}^\\infin\\frac{1}{1+x^2}dx=2\\pi i\\cdot\\frac{1}{2i}=\\pi" We get
"\\intop_0^\\infin\\frac{1}{1+x^2}dx=\\frac{1}{2}\\intop_{-\\infin}^\\infin\\frac{1}{1+x^2}dx=\\frac{\u03c0}{2}"
Comments
Leave a comment