Question #102648
Using the method of residues, show that:


Integral( 0 to infinity )(dx/1+x^2)=pie/2
1
Expert's answer
2020-02-20T08:38:39-0500
011+x2dx=π2\intop_0^\infin\frac{1}{1+x^2}dx=\frac{\pi}{2}


The integrand is even, so the integral can be replaced with


011+x2dx=1211+x2dx\intop_0^\infin\frac{1}{1+x^2}dx=\frac{1}{2}\intop_{-\infin}^\infin\frac{1}{1+x^2}dx


We use the formula:


Cf(z)dz=2πiResf(z)\oint_Cf(z)dz=2\pi i\sum Res{f(z)}


Find the singular point(s):


f(z)=11+z2=1(zi)(z+i)f(z)=\frac{1}{1+z^2}=\frac{1}{(z-i)(z+i)}

z=iz=i is a singular point located in the upper complex half-plane.

Resz=if(z)=limzif(z)(zi)=limzi1(z+i)(zi)(zi)=limzi1z+i=12iRes_{z=i}f(z)=\lim_{z\rightarrow i}f(z)(z-i)=\lim_{z\rightarrow i}\frac{1}{(z+i)(z-i)}(z-i)=\lim_{z\rightarrow i}\frac{1}{z+i}=\frac{1}{2i}



11+x2dx=2πi12i=π\intop_{-\infin}^\infin\frac{1}{1+x^2}dx=2\pi i\cdot\frac{1}{2i}=\pi

We get


011+x2dx=1211+x2dx=π2\intop_0^\infin\frac{1}{1+x^2}dx=\frac{1}{2}\intop_{-\infin}^\infin\frac{1}{1+x^2}dx=\frac{π}{2}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS