0∫∞1+x21dx=2π
The integrand is even, so the integral can be replaced with
0∫∞1+x21dx=21−∞∫∞1+x21dx
We use the formula:
∮Cf(z)dz=2πi∑Resf(z)
Find the singular point(s):
f(z)=1+z21=(z−i)(z+i)1 z=i is a singular point located in the upper complex half-plane.
Resz=if(z)=limz→if(z)(z−i)=limz→i(z+i)(z−i)1(z−i)=limz→iz+i1=2i1
−∞∫∞1+x21dx=2πi⋅2i1=π We get
0∫∞1+x21dx=21−∞∫∞1+x21dx=2π
Comments