"z=\\sqrt[6]{-7}\\\\\nz^6=-7\\\\\nz^6=7e^{\\pi i}\\\\\nz^6=7e^{(2\\pi n+\\pi) i} \\quad\\quad n=0,1,...5\\\\\nz=7^{\\frac{1}{6}} e^{\\frac{2\\pi n+\\pi}{6} i} \\quad\\quad n=0,1,...5\\\\\nz=1.383e^{(\\frac{\\pi n}{3}+\\frac{\\pi}{6}) i} \\quad\\quad n=0,1,...5"
six answers are,
"z_1=1.383e^{\\frac{\\pi}{6} i} \\\\\nz_2=1.383e^{\\frac{\\pi}{2} i} =1.383i\\\\\nz_3=1.383e^{\\frac{5\\pi}{6} i} \\\\\nz_4=1.383e^{\\frac{7\\pi}{6} i} \\\\\nz_5=1.383e^{\\frac{3\\pi}{2} i} =-1.383i\\\\\nz_6=1.383e^{\\frac{11\\pi}{6} i}"
Comments
Dear Shubham, please use the panel for submitting new questions.
Give another way for this answer using de moivre's theorem
Leave a comment