Question #108123
F(t)=sint×u(t-2) laplace transform
1
Expert's answer
2020-04-13T12:41:05-0400

F(t)=sint×u(t2)F(t)=sint\times u(t-2)

Let (t2)=z    dt=dz(t-2)=z\implies dt=dz

So F(z)=sin(z+2)×u(z)F(z)=sin(z+2)\times u(z)

Laplace will be F(s)F(s)

As F(s)=0es(z+2)sin(z+2)dzF(s)=\int^{\infin}_{0}e^{-s(z+2)}sin(z+2)dz

Using by parts integration,

F(s)=sin(z+2)es(z+2)s+1s0cos(z+2)es(z+2)dzF(s)=sin(z+2)\frac{e^{-s(z+2)}}{-s}+\frac{1}{s}\int^{\infin}_{0}cos(z+2)e^{-s(z+2)}dz

Apply by parts integration again, we get

F(s)=e2s(s×sin2+cos2)s2+1F(s)=\frac{e^{-2s}(s\times sin2+cos2)}{s^2+1}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS