By the Cauchy–Riemann equations we have ∂u∂x=∂v∂y=4x−kx2−15y2\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}=4x-kx^2-15y^2∂x∂u=∂y∂v=4x−kx2−15y2 and ∂u∂y=−∂v∂x=−4y+2kxy\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}=-4y+2kxy∂y∂u=−∂x∂v=−4y+2kxy
Then ∂2u∂x∂y=∂∂x(∂u∂y)=2ky\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial}{\partial x}\left(\frac{\partial u}{\partial y}\right)=2ky∂x∂y∂2u=∂x∂(∂y∂u)=2ky and ∂2u∂x∂y=∂∂y(∂u∂x)=−30y\frac{\partial^2 u}{\partial x\partial y}=\frac{\partial}{\partial y}\left(\frac{\partial u}{\partial x}\right)=-30y∂x∂y∂2u=∂y∂(∂x∂u)=−30y. So 2k=−302k=-302k=−30 and k=−15k=-15k=−15
Answer: k=−15k=-15k=−15
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments