Let's take the transform of every term in the differential equation
"L[y'']-L[2y']+L[1]=0"
It is known, that
"L[y'']=s^2L[y]-sy(0)-y'(0)=s^2Y(s)-5s+9"
"L[y']=sY(s)-y(0)=sY(s)-5" .
Here "Y(s)=L[y]"
The Laplace-transformed differential equation is
"s^2Y(s)-5s+9-2(sY(s)-5)+\\frac{1}{s}=0"
"Y(s^2-2s)=5s-\\frac{1}{s}-19"
"Y=\\frac{5s^2-19s-1}{s(s^2-2s)}=\\frac{1}{2s^2}+\\frac{39}{4s}-\\frac{19}{4(s-2)}"
Recalling the inverse transform will lead us to
"\\frac{1}{s^2}\\gets x;\\quad \\frac{1}{s}\\gets 1;\\quad \\frac{1}{s-2}\\gets e^{2t}"
Therefore
"Y\\gets y=\\frac{t}{2}+\\frac{39}{4}-\\frac{19}{4}e^{2t}"
Comments
Leave a comment