z=cosθ+isinθu+iv=(1+z)(1+z2)==((1+cosθ)+isinθ)⋅(1+cos2θ+2icosθsinθ−sin2θ)==((1+cosθ)+isinθ)⋅((1+cos2θ−sin2θ)+2icosθsinθ)==((1+cosθ)+isinθ)⋅(2cos2θ+2icosθsinθ)==2cos2θ(1+cosθ)−2cosθsin2θ++i(2cosθsinθ(1+cosθ)+2sinθcos2θ)u=2cos2θ(1+cosθ)−2cosθsin2θ==2cosθ(cosθ+cos2θ)v=2cosθsinθ(1+cosθ)+2sinθcos2θ==2sinθcosθ(1+2cosθ)=2cosθ(sinθ+sin2θ)utan23θ=2cosθ(cosθ+cos2θ)cos23θsin23θ==cos23θ2cosθ2sin2θ+sin25θ−sin2θ+sin27θ==cos23θ2cosθ22sin3θcos2θ==2cosθ(2sin23θcos2θ)==2cosθ(sinθ+sin2θ)u2+v2=u=4cos2θ(cosθ+cos2θ)2++4cos2θ(sinθ+sin2θ)2==4cos2θ(cos2θ+2cosθcos2θ+cos22θ++sin2θ+2sinθsin2θ+sin22θ)==4cos2θ(2+2cosθ)=8cos2θ(1+cosθ)==16cos2θcos22θ
Comments