(a) Let "w=\\rho(\\cos\\phi+i\\sin\\phi)" and "z=r(\\cos\\theta+i sin\\theta)" then by De Moivre's formula we have that "z^n=r^n(\\cos n\\theta+i \\sin n\\theta)"
"z^n=w \\rightsquigarrow r^n(\\cos n\\theta+i \\sin n\\theta)=\\rho(\\cos\\phi+i\\sin\\phi)"
Hence, "r^n=\\rho, \\,\\, n\\theta=\\phi+2\\pi k"
"w\\in\\mathbb R_- \\rightsquigarrow \\phi=\\pi"
For "n=6\\colon r=\\rho^{1\/6} \\bigg( \\cos \\frac{\\pi+2\\pi k}{6} +i\\sin \\frac{\\pi+2\\pi k}{6} \\bigg)"
for each "k\\in\\{0,1,\\dots,n-1=5\\}"
Comments
Leave a comment