Let's rewrite the function
w(x+iy)=x+iy+ex+iy=x+iy+ex(cosy+isiny)w(x+iy)=x+iy+e^{x+iy}=x+iy+e^x(\cos y+i\sin y)w(x+iy)=x+iy+ex+iy=x+iy+ex(cosy+isiny)
u=Re(w)=x+excosyu=Re(w)=x+e^x\cos yu=Re(w)=x+excosy
v=Im(w)=y+exsinyv=Im(w)=y+e^x\sin yv=Im(w)=y+exsiny
∂u∂x=1+excosy=∂v∂y\frac{\partial u}{\partial x}=1+e^x\cos y=\frac{\partial v}{\partial y}∂x∂u=1+excosy=∂y∂v
∂u∂y=−exsiny=−∂v∂x\frac{\partial u}{\partial y}=-e^x\sin y=-\frac{\partial v}{\partial x}∂y∂u=−exsiny=−∂x∂v
Therefore the function is analytic and
w′=1+ezw'=1+e^zw′=1+ez
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments