z = − 1 + i = ∣ z ∣ ( c o s θ + i s i n θ ) z=-1+i=|z|(cos\theta+isin\theta) z = − 1 + i = ∣ z ∣ ( cos θ + i s in θ )
∣ z ∣ = 1 + 1 = 2 |z|=\sqrt{1+1}=\sqrt{2} ∣ z ∣ = 1 + 1 = 2
c o s θ = − 1 / 2 , s i n θ = 1 / 2 , θ = 3 π / 4 cos\theta=-1/\sqrt{2}, sin\theta=1/\sqrt{2}, \theta=3\pi/4 cos θ = − 1/ 2 , s in θ = 1/ 2 , θ = 3 π /4
− 1 + i = 2 ( c o s 3 π 4 + i s i n 3 π 4 ) -1+i=\sqrt{2}(cos\frac {3\pi}{4}+isin\frac {3\pi}{4}) − 1 + i = 2 ( cos 4 3 π + i s in 4 3 π )
z n = ∣ z ∣ n ( c o s ( n θ ) + i s i n ( n θ ) ) z^n=|z|^n(cos(n\theta)+isin(n\theta)) z n = ∣ z ∣ n ( cos ( n θ ) + i s in ( n θ ))
( − 1 + i ) 16 = ( 2 ) 16 ( c o s ( 16 ⋅ 3 π 4 ) + i s i n ( 16 ⋅ 3 π 4 ) = (-1+i)^{16}=(\sqrt{2})^{16}(cos(\frac {16\cdot3\pi}{4})+isin(\frac {16\cdot3\pi}{4})= ( − 1 + i ) 16 = ( 2 ) 16 ( cos ( 4 16 ⋅ 3 π ) + i s in ( 4 16 ⋅ 3 π ) =
= 2 8 ( c o s 12 π + i s i n 12 π ) = 256 ( 1 + 0 ) = 256 =2^8(cos12\pi+isin12\pi)=256(1+0)=256 = 2 8 ( cos 12 π + i s in 12 π ) = 256 ( 1 + 0 ) = 256
1 ( − 1 + i ) 6 = 1 ( 2 ) 6 ( c o s ( 6 ⋅ 3 π 4 ) + i s i n ( 6 ⋅ 3 π 4 ) = \frac {1}{(-1+i)^6}=\frac {1}{(\sqrt{2})^6(cos(\frac {6\cdot3\pi}{4})+isin(\frac {6\cdot3\pi}{4})}= ( − 1 + i ) 6 1 = ( 2 ) 6 ( cos ( 4 6 ⋅ 3 π ) + i s in ( 4 6 ⋅ 3 π ) 1 =
= 1 2 3 ( c o s ( 9 π / 2 ) + i s i n ( 9 π / 2 ) ) = 1 8 ( 0 + i ) = 1 8 i = − i / 8 =\frac {1}{2^3(cos(9\pi/2)+isin(9\pi/2))}=\frac {1}{8(0+i)}=\frac {1}{8i}=-i/8 = 2 3 ( cos ( 9 π /2 ) + i s in ( 9 π /2 )) 1 = 8 ( 0 + i ) 1 = 8 i 1 = − i /8
Comments