We know that:
∣z∣=Re2(z)+Im2(z)|z|=\sqrt{Re^2(z)+Im^2(z)}∣z∣=Re2(z)+Im2(z)
So, we have:
{Re2(z)+(Im(z)+3)2=(Re(z)+5)2+(Im(z)−2)2Re2(z)+(Im(z)−4)2=Re2(z)+(Im(z)+2)2\begin{cases} Re^2(z)+(Im(z)+3)^2=(Re(z)+5)^2+(Im(z)-2)^2 \\ Re^2(z)+(Im(z)-4)^2=Re^2(z)+(Im(z)+2)^2 \\ \end{cases}{Re2(z)+(Im(z)+3)2=(Re(z)+5)2+(Im(z)−2)2Re2(z)+(Im(z)−4)2=Re2(z)+(Im(z)+2)2
From the second equation it follows that
Im(z)=1Im(z)=1Im(z)=1
Substituting into the first equation
Re(z)=−1=>z=−1+iRe(z)=-1=>z=-1+iRe(z)=−1=>z=−1+i
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment