Question #116942
Determine the complex number Z which satisfies the equations |z+3i|=|z+5-2i| and |z-4i|=|z+2i| simultaneously
1
Expert's answer
2020-05-19T19:14:55-0400

Let z=a+bi.z=a+bi. Then


z+3i=z+52i|z+3i|=|z+5-2i|a+(b+3)i=(a+5)+(b2)i|a+(b+3)i|=|(a+5)+(b-2)i|

a2+(b+3)2=(a+5)2+(b2)2a^2+(b+3)^2=(a+5)^2+(b-2)^2a2+b2+6b+9=a2+10a+25+b24b+4a^2+b^2+6b+9=a^2+10a+25+b^2-4b+410a=10b2010a=10b-20a=b2a=b-2


z4i=z+2i|z-4i|=|z+2i|a+(b4)i=a+(b+2)i|a+(b-4)i|=|a+(b+2)i|a2+(b4)2=a2+(b+2)2a^2+(b-4)^2=a^2+(b+2)^2a2+b28b+16=a2+b2+4b+4a^2+b^2-8b+16=a^2+b^2+4b+412b=1212b=12b=1b=1

a=12=1a=1-2=-1

z=1+iz=-1+i



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS