Answer to Question #116961 in Complex Analysis for Amoah Henry

Question #116961
press the roots of the equation z3 − α3 = 0 in terms of α and w, where w is a complex cube root of unity. Use your answer to find the roots of the following equations in the form a + ib.
1
Expert's answer
2020-05-20T18:29:52-0400
"z^3-\\alpha^3=0"

"z^3-\\alpha^3=(z-\\alpha)(z^2+\\alpha z+\\alpha^2)"

Then


"(z-\\alpha)(z^2+\\alpha z+\\alpha^2)=0"

"z_1=\\alpha\\" or "z^2+\\alpha z+\\alpha^2=0"


"z={-\\alpha\\pm\\sqrt{\\alpha^2-4\\alpha^2}\\over2}=\\alpha({-1\\pm i\\sqrt{3}\\over2})"

Cube Root of Unity Value


"w_1=1,\\ real"


"w_2={-1- i\\sqrt{3}\\over2}, complex"

"w_3={-1+ i\\sqrt{3}\\over2}, \\ complex"

"z_1=\\alpha w_1=\\alpha\\cdot1=1\\cdot\\alpha+i\\cdot0"

"z_2=\\alpha w_2=\\alpha\\cdot{-1- i\\sqrt{3}\\over2}=-{1\\over 2}\\alpha-i\\cdot{\\alpha\\sqrt{3}\\over 2}"

"z_3=\\alpha w_3=\\alpha\\cdot{-1+ i\\sqrt{3}\\over2}=-{1\\over 2}\\alpha+i\\cdot{\\alpha\\sqrt{3}\\over 2}"



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment

LATEST TUTORIALS
New on Blog
APPROVED BY CLIENTS