Question #116961
press the roots of the equation z3 − α3 = 0 in terms of α and w, where w is a complex cube root of unity. Use your answer to find the roots of the following equations in the form a + ib.
1
Expert's answer
2020-05-20T18:29:52-0400
z3α3=0z^3-\alpha^3=0

z3α3=(zα)(z2+αz+α2)z^3-\alpha^3=(z-\alpha)(z^2+\alpha z+\alpha^2)

Then


(zα)(z2+αz+α2)=0(z-\alpha)(z^2+\alpha z+\alpha^2)=0

z_1=\alpha\ or z2+αz+α2=0z^2+\alpha z+\alpha^2=0


z=α±α24α22=α(1±i32)z={-\alpha\pm\sqrt{\alpha^2-4\alpha^2}\over2}=\alpha({-1\pm i\sqrt{3}\over2})

Cube Root of Unity Value


w1=1, realw_1=1,\ real


w2=1i32,complexw_2={-1- i\sqrt{3}\over2}, complex

w3=1+i32, complexw_3={-1+ i\sqrt{3}\over2}, \ complex

z1=αw1=α1=1α+i0z_1=\alpha w_1=\alpha\cdot1=1\cdot\alpha+i\cdot0

z2=αw2=α1i32=12αiα32z_2=\alpha w_2=\alpha\cdot{-1- i\sqrt{3}\over2}=-{1\over 2}\alpha-i\cdot{\alpha\sqrt{3}\over 2}

z3=αw3=α1+i32=12α+iα32z_3=\alpha w_3=\alpha\cdot{-1+ i\sqrt{3}\over2}=-{1\over 2}\alpha+i\cdot{\alpha\sqrt{3}\over 2}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS