"z^3-\\alpha^3=(z-\\alpha)(z^2+\\alpha z+\\alpha^2)"
Then
"z_1=\\alpha\\" or "z^2+\\alpha z+\\alpha^2=0"
Cube Root of Unity Value
"w_3={-1+ i\\sqrt{3}\\over2}, \\ complex"
"z_1=\\alpha w_1=\\alpha\\cdot1=1\\cdot\\alpha+i\\cdot0"
"z_2=\\alpha w_2=\\alpha\\cdot{-1- i\\sqrt{3}\\over2}=-{1\\over 2}\\alpha-i\\cdot{\\alpha\\sqrt{3}\\over 2}"
"z_3=\\alpha w_3=\\alpha\\cdot{-1+ i\\sqrt{3}\\over2}=-{1\\over 2}\\alpha+i\\cdot{\\alpha\\sqrt{3}\\over 2}"
Comments
Leave a comment