Question #116912
Express the roots of the equation z3 −α3 = 0 in terms of α and w, where w is a complex cube root of unity. Use your answer to find the roots of the following equations in the form a + ib.
1
Expert's answer
2020-05-19T09:13:06-0400
z3α3=0z^3-\alpha^3=0

z3α3=(zα)(z2+αz+α2)z^3-\alpha^3=(z-\alpha)(z^2+\alpha z+\alpha^2)

Then


(zα)(z2+αz+α2)=0(z-\alpha)(z^2+\alpha z+\alpha^2)=0

z_1=\alpha\ or z2+αz+α2=0z^2+\alpha z+\alpha^2=0


z=α±α24α22=α(1±j32)z={-\alpha\pm\sqrt{\alpha^2-4\alpha^2}\over2}=\alpha({-1\pm j\sqrt{3}\over2})

Cube Root of Unity Value


w1=1, realw_1=1,\ realw2=1j32,complexw_2={-1- j\sqrt{3}\over2}, complexw3=1+j32, complexw_3={-1+ j\sqrt{3}\over2}, \ complex

z1=αw1=α1=1α+j0z_1=\alpha w_1=\alpha\cdot1=1\cdot\alpha+j\cdot0

z2=αw2=α1j32=12αjα32z_2=\alpha w_2=\alpha\cdot{-1- j\sqrt{3}\over2}=-{1\over 2}\alpha-j\cdot{\alpha\sqrt{3}\over 2}

z2=αw3=α1+j32=12α+jα32z_2=\alpha w_3=\alpha\cdot{-1+ j\sqrt{3}\over2}=-{1\over 2}\alpha+j\cdot{\alpha\sqrt{3}\over 2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS