Calculus Answers

Questions: 7 610

Answers by our Experts: 7 078

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Search & Filtering

If V

 is a vector field, prove that:


∇×(∇×V)=∇(∇⋅V)−(∇^2)V.





Given that U

 is a function of x,y

 and z

 and A

 a vector field, prove that:


∇×(UA)=(∇U)×A+U(∇×A).



Show that if f and g are two functions such that


f o g is onto, then g need not be onto.

a) Define Bijective function and Surjective function.




b) Find the limiting value of i) lim




𝑥→7




𝑥




2+2𝑥−63




𝑥−7




ii) lim




𝑥→∞




5𝑥−1




5𝑥+1




.




c) Test the continuity of following functions at x= -2 and x=3




𝑓(𝑥) = {




7𝑥 − 1 𝑖𝑓 𝑥 > 3




𝑥




2 − 8 𝑖𝑓 − 2 ≤ 𝑥 ≤ 3




8𝑥 + 3 𝑖𝑓 𝑥 < −2


If A and Bare vector fields, prove the following:



nabla(A* B)=(B* nabla)A+(A* nabla)B+B*( nabla* A)+A*( nabla* B) .

[SADT10] Let r=x hat i +y hat j +z hat k and r = ||r||



Show that:



nabla(lnr)= r r^ 2 .



and



nabla*(r^ n r)=0 .

[SADT9] The Laplacian of a function f of n variables x 1 ,x 2 ,*** x n denoted nabla^ 2 f is defined by



nabla^ 2 f(x 1 ,x 2 ,***,x n ):= partial^ 2 f partial x 1 ^ 2 + partial^ 2 f partial x 2 ^ 2 +***+ partial^ 2 f partial x n ^ 2



Now assume that f depends only on r where r=(x 1 ^ 2 +x 2 ^ 2 +***+x n ^ 2 )^ 1 2 i.e. f(x 1 ,x 2 ,***,x n )=g(r) for some function g. Show that, for x 1 ,x 2 ,***,x n ne0 ,



nabla^ 2 f= n-1 r g^ prime (r)+g^ prime prime (r)

[SADT3] For scalar functions u and v, show that



B=( nabla u)*( nabla v)



is solenoidal and that



A= 1 2 (u nabla v-v nabla u)



is a vector potential for B, i.e. B= nabla* A

The Laplacian of a function f

 of n

 variables x

1

,x

2

,⋯x

n

, denoted ∇

2

f

 is defined by


2

f(x

1

,x

2

,⋯,x

n

):=∂

2

f

∂x

2

1


+∂

2

f

∂x

2

2


+⋯+∂

2

f

∂x

2

n


Now assume that f

 depends only on r

 where r=(x

2

1

+x

2

2

+⋯+x

2

n

)

1

2


, i.e. f(x

1

,x

2

,⋯,x

n

)=g(r)

, for some function g

. Show that, for x

1

,x

2

,⋯,x

n

≠0

,


2

f=n−1

r


g

(r)+g

′′

(r)



 If A

 and B

 are vector fields, prove the following:


∇(AB)=(B⋅∇)A+(A⋅∇)B+B×(∇×A)+A×(∇×B).

Submit

Some problems have options such as save, reset, hints, or show answer. These options follow the Submit button.