B = ( ∇ u ) × ( ∇ v ) B=( \nabla u)\times( \nabla v) B = ( ∇ u ) × ( ∇ v )
A = 1 2 ( u ∇ v − v ∇ u ) A= \frac{1}{2} (u \nabla v-v \nabla u) A = 2 1 ( u ∇ v − v ∇ u )
B = ∇ × A B= \nabla\times A B = ∇ × A
for solenoidal vector field:
∇ ⋅ B = 0 \nabla \cdot B=0 ∇ ⋅ B = 0
∇ u = ∂ u ∂ x i + ∂ u ∂ y j + ∂ u ∂ z k \nabla u=\frac{\partial u}{\partial x}i+\frac{\partial u}{\partial y}j+\frac{\partial u}{\partial z}k ∇ u = ∂ x ∂ u i + ∂ y ∂ u j + ∂ z ∂ u k
∇ v = ∂ v ∂ x i + ∂ v ∂ y j + ∂ v ∂ z k \nabla v=\frac{\partial v}{\partial x}i+\frac{\partial v}{\partial y}j+\frac{\partial v}{\partial z}k ∇ v = ∂ x ∂ v i + ∂ y ∂ v j + ∂ z ∂ v k
B = ( ∇ u ) × ( ∇ v ) = ∣ i j k ∂ u ∂ x ∂ u ∂ y ∂ u ∂ z ∂ v ∂ x ∂ v ∂ y ∂ v ∂ z ∣ = B=( \nabla u)\times( \nabla v)=\begin{vmatrix}
i & j&k \\
\frac{\partial u}{\partial x}&\frac{\partial u}{\partial y}&\frac{\partial u}{\partial z}\\
\frac{\partial v}{\partial x}&\frac{\partial v}{\partial y}&\frac{\partial v}{\partial z}\\
\end{vmatrix}= B = ( ∇ u ) × ( ∇ v ) = ∣ ∣ i ∂ x ∂ u ∂ x ∂ v j ∂ y ∂ u ∂ y ∂ v k ∂ z ∂ u ∂ z ∂ v ∣ ∣ =
= ( ∂ u ∂ y ∂ v ∂ z − ∂ v ∂ y ∂ u ∂ z ) i − ( ∂ u ∂ x ∂ v ∂ z − ∂ u ∂ z ∂ v ∂ x ) j + ( ∂ u ∂ x ∂ v ∂ y − ∂ u ∂ y ∂ v ∂ x ) k = 0 =(\frac{\partial u}{\partial y}\frac{\partial v}{\partial z}-\frac{\partial v}{\partial y}\frac{\partial u}{\partial z})i-(\frac{\partial u}{\partial x}\frac{\partial v}{\partial z}-\frac{\partial u}{\partial z}\frac{\partial v}{\partial x})j+(\frac{\partial u}{\partial x}\frac{\partial v}{\partial y}-\frac{\partial u}{\partial y}\frac{\partial v}{\partial x})k=0 = ( ∂ y ∂ u ∂ z ∂ v − ∂ y ∂ v ∂ z ∂ u ) i − ( ∂ x ∂ u ∂ z ∂ v − ∂ z ∂ u ∂ x ∂ v ) j + ( ∂ x ∂ u ∂ y ∂ v − ∂ y ∂ u ∂ x ∂ v ) k = 0
so, ∇ ⋅ B = 0 \nabla \cdot B=0 ∇ ⋅ B = 0
A = 1 2 ( u ∇ v − v ∇ u ) = 1 2 ( u ∂ v ∂ x i + u ∂ v ∂ y j + u ∂ v ∂ z k − v ∂ u ∂ x i − v ∂ u ∂ y j − v ∂ u ∂ z k ) A= \frac{1}{2} (u \nabla v-v \nabla u)=\frac{1}{2} (u\frac{\partial v}{\partial x}i+u\frac{\partial v}{\partial y}j+u\frac{\partial v}{\partial z}k-v\frac{\partial u}{\partial x}i-v\frac{\partial u}{\partial y}j-v\frac{\partial u}{\partial z}k) A = 2 1 ( u ∇ v − v ∇ u ) = 2 1 ( u ∂ x ∂ v i + u ∂ y ∂ v j + u ∂ z ∂ v k − v ∂ x ∂ u i − v ∂ y ∂ u j − v ∂ z ∂ u k )
∇ × A = [ ∂ ∂ y ( u ∂ v ∂ z − v ∂ u ∂ z ) − ∂ ∂ z ( u ∂ v ∂ y − v ∂ u ∂ y ) ] i + [ ∂ ∂ z ( u ∂ v ∂ z − v ∂ u ∂ z ) − ∂ ∂ x ( u ∂ v ∂ z − v ∂ u ∂ z ) ] j + \nabla\times A=[\frac{\partial}{\partial y}(u\frac{\partial v}{\partial z}-v\frac{\partial u}{\partial z})-\frac{\partial}{\partial z}(u\frac{\partial v}{\partial y}-v\frac{\partial u}{\partial y})]i+[\frac{\partial}{\partial z}(u\frac{\partial v}{\partial z}-v\frac{\partial u}{\partial z})-\frac{\partial}{\partial x}(u\frac{\partial v}{\partial z}-v\frac{\partial u}{\partial z})]j+ ∇ × A = [ ∂ y ∂ ( u ∂ z ∂ v − v ∂ z ∂ u ) − ∂ z ∂ ( u ∂ y ∂ v − v ∂ y ∂ u )] i + [ ∂ z ∂ ( u ∂ z ∂ v − v ∂ z ∂ u ) − ∂ x ∂ ( u ∂ z ∂ v − v ∂ z ∂ u )] j +
+ [ ∂ ∂ x ( u ∂ v ∂ y − v ∂ u ∂ y ) − ∂ ∂ y ( u ∂ v ∂ x − v ∂ u ∂ x ) ] k = B +[\frac{\partial}{\partial x}(u\frac{\partial v}{\partial y}-v\frac{\partial u}{\partial y})-\frac{\partial}{\partial y}(u\frac{\partial v}{\partial x}-v\frac{\partial u}{\partial x})]k=B + [ ∂ x ∂ ( u ∂ y ∂ v − v ∂ y ∂ u ) − ∂ y ∂ ( u ∂ x ∂ v − v ∂ x ∂ u )] k = B
Comments