[SADT3] For scalar functions u and v, show that
B=( nabla u)*( nabla v)
is solenoidal and that
A= 1 2 (u nabla v-v nabla u)
is a vector potential for B, i.e. B= nabla* A
"B=( \\nabla u)\\times( \\nabla v)"
"A= \\frac{1}{2} (u \\nabla v-v \\nabla u)"
"B= \\nabla\\times A"
for solenoidal vector field:
"\\nabla \\cdot B=0"
"\\nabla u=\\frac{\\partial u}{\\partial x}i+\\frac{\\partial u}{\\partial y}j+\\frac{\\partial u}{\\partial z}k"
"\\nabla v=\\frac{\\partial v}{\\partial x}i+\\frac{\\partial v}{\\partial y}j+\\frac{\\partial v}{\\partial z}k"
"B=( \\nabla u)\\times( \\nabla v)=\\begin{vmatrix}\n i & j&k \\\\\n \\frac{\\partial u}{\\partial x}&\\frac{\\partial u}{\\partial y}&\\frac{\\partial u}{\\partial z}\\\\\n\\frac{\\partial v}{\\partial x}&\\frac{\\partial v}{\\partial y}&\\frac{\\partial v}{\\partial z}\\\\\n\\end{vmatrix}="
"=(\\frac{\\partial u}{\\partial y}\\frac{\\partial v}{\\partial z}-\\frac{\\partial v}{\\partial y}\\frac{\\partial u}{\\partial z})i-(\\frac{\\partial u}{\\partial x}\\frac{\\partial v}{\\partial z}-\\frac{\\partial u}{\\partial z}\\frac{\\partial v}{\\partial x})j+(\\frac{\\partial u}{\\partial x}\\frac{\\partial v}{\\partial y}-\\frac{\\partial u}{\\partial y}\\frac{\\partial v}{\\partial x})k=0"
so, "\\nabla \\cdot B=0"
"A= \\frac{1}{2} (u \\nabla v-v \\nabla u)=\\frac{1}{2} (u\\frac{\\partial v}{\\partial x}i+u\\frac{\\partial v}{\\partial y}j+u\\frac{\\partial v}{\\partial z}k-v\\frac{\\partial u}{\\partial x}i-v\\frac{\\partial u}{\\partial y}j-v\\frac{\\partial u}{\\partial z}k)"
"\\nabla\\times A=[\\frac{\\partial}{\\partial y}(u\\frac{\\partial v}{\\partial z}-v\\frac{\\partial u}{\\partial z})-\\frac{\\partial}{\\partial z}(u\\frac{\\partial v}{\\partial y}-v\\frac{\\partial u}{\\partial y})]i+[\\frac{\\partial}{\\partial z}(u\\frac{\\partial v}{\\partial z}-v\\frac{\\partial u}{\\partial z})-\\frac{\\partial}{\\partial x}(u\\frac{\\partial v}{\\partial z}-v\\frac{\\partial u}{\\partial z})]j+"
"+[\\frac{\\partial}{\\partial x}(u\\frac{\\partial v}{\\partial y}-v\\frac{\\partial u}{\\partial y})-\\frac{\\partial}{\\partial y}(u\\frac{\\partial v}{\\partial x}-v\\frac{\\partial u}{\\partial x})]k=B"
Comments
Leave a comment