Answer to Question #275761 in Calculus for JAY

Question #275761
  1. D2((x+1)2/x-1)            ans, 8/(x-1)3
  2. D(ln(x2-2x+1))            ans, 2/x-1
1
Expert's answer
2021-12-06T13:23:29-0500

1. D((x+1)2/(x1))=(x1)D(x+1)2(x+1)2D(x1)(x1)2=(x1)2(x+1)(x+1)21(x1)2=x22x3(x1)2=(x22x+1)4(x1)2=14(x1)21. \ D\big((x+1)^2/(x-1)\big)=\frac{(x-1)\cdot D(x+1)^2-(x+1)^2\cdot D(x-1)}{(x-1)^2}= \frac{(x-1)\cdot 2(x+1)-(x+1)^2\cdot 1 }{(x-1)^2 }= \frac{x^2-2x-3 }{(x-1)^2 }= \frac{(x^2-2x+1)-4}{(x-1)^2}= 1-\frac{4}{(x-1)^2}


D2((x+1)2/(x1))=D(14(x1)2)=D14D(x1)2=4(2)(x1)3=8(x1)3D^2\big((x+1)^2/(x-1)\big)=D\big(1-4\cdot (x-1)^{-2})=D1-4D(x-1)^{-2}=-4\cdot (-2)\cdot (x-1)^{-3}=\frac{8}{(x-1)^3}


2. D((ln(x22x+1))=D(ln(x1)2)=D(2lnx1)=2Dlnx1=2x12.\ D\big((\ln (x^2-2x+1)\big)=D\big(\ln (x-1)^2\big)=D\big(2\ln |x-1|\big)=2D\ln |x-1|=\frac{2}{x-1}


Answers: 1) 8(x1)3;   2)2x1.1)\ \frac{8}{(x-1)^3};\ \ \ 2)\frac{2}{x-1}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment