C(x)=6500+85x+3.5(0.01x)2,x>0
C(x)/x=6500/x+85+3.5(0.01)2x
(C(x)/x)′=−6500/x2+0.00035 Find the critical number(s)
(C(x)/x)′=0=>−6500/x2+0.00035=0
x2=18571428.5714
x=±4309.458We consider x>0. The function C(x)/x has the absolute minimum for x>0 at x=4309.458
C(8062)=6500+85(8062)+
C(4309)/4309=6500/4309+85+0.00035(4309)
≈88.01662
C(4310)/4310=6500/4310+85+0.00035(4310)
≈88.01662
C(4309)=6500+85(4309)+0.00035(4309)2
≈379263.62
C(4310)=6500+85(4310)+0.00035(4310)2
≈379351.64
The level production of 4309 or 4310 items will minimize the cost per item over the year.
The total cost amount is RM 379263.62 at level production of 4309.
The total cost amount is RM 379351.64 at level production of 4310.
Comments