Question #275538

Find the general solution of

(y-xu)p+(x+yu)q=x2+y2

1
Expert's answer
2021-12-07T10:15:32-0500

Given, (yxu)p+(x+yu)q=x2+y2(y-xu)p+(x+yu)q = x^{2}+y^{2}.

This equation is of the form Pp+Qq=RPp+Qq=R (Lagrange's linear partial differential equation).

Here, P=yxu,Q=(x+yu),R=x2+y2P = y-xu, Q=(x+yu), R = x^{2}+y^{2}.


The subsidiary equations are

dxP=dyQ=duRdxy+xu=dy(x+yu)=dux2+y2           (1)\dfrac{dx}{P}=\dfrac{dy}{Q}=\dfrac{du}{R}\\ \dfrac{dx}{y+xu}=\dfrac{dy}{-(x+yu)}=\dfrac{du}{x^{2}+y^{2}}~~~~~~~~~~~-(1).

Each ratio of (1) is equal to xdx+ydy(x2y2)u=dx+dy(1u)(yx)\dfrac{xdx+ydy}{(x^{2}-y^{2})u} = \dfrac{dx+dy}{(1-u)(y-x)}.

Let us consider,

xdx+ydy(x2y2)u=dux2y2xdx+ydy=uduIntegrating, xdx+ydy=zdzx22+y22=z22+c12x2+y2u2=c1\dfrac{xdx+ydy}{(x^{2}-y^{2})u} = \dfrac{du}{x^{2}-y^{2}}\\ xdx+ydy=udu\\ \text{Integrating, }\\ \int xdx + \int ydy = \int zdz\\ \dfrac{x^{2}}{2}+\dfrac{y^{2}}{2} =\dfrac{z^{2}}{2}+\dfrac{c_{1}}{2}\\ x^{2}+y^{2}-u^{2}=c_{1}


Consider,

dx+dy(1u)(yx)=du(x+y)(xy)dx+dy1u=du(x+y)(x+y)d(x+y)=(1u)duIntegrating,(x+y)d(x+y)=(1+z)dz(x+y)22=(1z)22+c22(1u)2(x+y)2=c2\dfrac{dx+dy}{(1-u)(y-x)}=\dfrac{du}{(x+y)(x-y)}\\ \dfrac{dx+dy}{1-u}=\dfrac{du}{-(x+y)}\\ -(x+y)d(x+y)=(1-u)du\\ \text{Integrating,}\\ -\int (x+y)d(x+y)=\int (1+z)dz\\ -\dfrac{(x+y)^2}{2}=\dfrac{(1-z)^{2}}{-2}+\dfrac{c_{2}}{2}\\ (1-u)^{2}-(x+y)^{2}=c_{2}


The general solution is,

ϕ(c1,c2)=0ϕ(x2+y2u2,(1u)2(x+y)2)=0.\phi(c_{1},c_{2})=0\\ \phi\left(x^{2}+y^{2}-u^{2}, (1-u)^{2}-(x+y)^{2}\right)=0.

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS