Given, (y−xu)p+(x+yu)q=x2+y2.
This equation is of the form Pp+Qq=R (Lagrange's linear partial differential equation).
Here, P=y−xu,Q=(x+yu),R=x2+y2.
The subsidiary equations are
Pdx=Qdy=Rduy+xudx=−(x+yu)dy=x2+y2du −(1).
Each ratio of (1) is equal to (x2−y2)uxdx+ydy=(1−u)(y−x)dx+dy.
Let us consider,
(x2−y2)uxdx+ydy=x2−y2duxdx+ydy=uduIntegrating, ∫xdx+∫ydy=∫zdz2x2+2y2=2z2+2c1x2+y2−u2=c1
Consider,
(1−u)(y−x)dx+dy=(x+y)(x−y)du1−udx+dy=−(x+y)du−(x+y)d(x+y)=(1−u)duIntegrating,−∫(x+y)d(x+y)=∫(1+z)dz−2(x+y)2=−2(1−z)2+2c2(1−u)2−(x+y)2=c2
The general solution is,
ϕ(c1,c2)=0ϕ(x2+y2−u2,(1−u)2−(x+y)2)=0.
Comments