unit sphere centered at origin is x2+y2+z2=1
⇒z2=1−x2−y2
given T(x,y,z)=200xyz2
T(x,y)=200xy(1−x2−y2)
⇒T(x,y)=200(xy−x3y−xy3)
Tx=200(y−3x2y−y3),Ty=200(x−x3−3xy2)
for critical points Tx=0,Ty=0
200(y−3x2y−y3)=0,200(x−x3−3xy2)=0⇒200y(1−3x2−y2)=0,200x(1−x2−3y2)=0⇒y=0,1−3x2−y2=0;x=0,1−x2−3y2=0y=0,1−x2−3y2=0⇒1−x2−3(0)2=0⇒x=−1,1
x=0,1−3x2−y2=0⇒1−3(02)−y2=0⇒y=−1,11−3x2−y2=0,1−x2−3y2=0⇒3−9x2−3y2=0,1−x2−3y2=0⇒3−9x2−3y2−1+x2+3y2=0−0⇒2−8x2=0⇒x2=1/4⇒x=−1/2,1/2
1−3x2−y2=0,x2=1/4⇒1−3(1/4)−y2=0⇒y2=1/4=y=−1/2,1/2(−1,0),(1,0),(0,−1),(0,1),(−1/2,−1/2),(1/2,1/2),(−1/2,1/2),(1/2,−1/2) are only critical points on unit sphere T(−1,0)=0,T(1,0)=0,T(0,−1)=0,T(0,1)=0,T(−1/2,−1/2)=200(−1/2)(−1/2)(1−(−1/2)2−(−1/2)2)=25,T(1/2,1/2)=200(1/2)(1/2)(1−(1/2)2−(1/2)2)=25T(−1/2,1/2)=200(−1/2)(1/2)(1−(−1/2)2−(1/2)2)=−25,T(1/2,−1/2)=200(1/2)(−1/2)(1−(1/2)2−(−1/2)2)=−25 hottest temperature on unit sphere is 25 units
Comments