Question #275327

The temperature in space given by T(x, y, z)= 200xyz? Find the hottest temperature on a unit sphere centered at the origin. (DO NOT USE LAGRANGE MULTIPLIERS)

1
Expert's answer
2021-12-16T09:56:23-0500

unit sphere centered at origin is x2+y2+z2=1x^{2}+y^{2}+z^{2}=1

 z2=1x2y2\Rightarrow z^{2}=1-x^{2}-y^{2}

given T(x,y,z)=200xyz2T(x, y, z)=200 x y z^{2}

T(x,y)=200xy(1x2y2)T(x, y)=200 x y\left(1-x^{2}-y^{2}\right)

T(x,y)=200(xyx3yxy3)\Rightarrow T(x, y)=200\left(x y-x^{3} y-x y^{3}\right)

Tx=200(y3x2yy3),Ty=200(xx33xy2)T_{x}=200\left(y-3 x^{2} y-y^{3}\right), T_{y}=200\left(x-x^{3}-3 x y^{2}\right)

for critical points Tx=0,Ty=0T_{x}=0, T_{y}=0

 200(y3x2yy3)=0,200(xx33xy2)=0200y(13x2y2)=0,200x(1x23y2)=0y=0,13x2y2=0;x=0,1x23y2=0y=0,1x23y2=01x23(0)2=0x=1,1\begin{aligned} &200\left(y-3 x^{2} y-y^{3}\right)=0,200\left(x-x^{3}-3 x y^{2}\right)=0 \\ &\Rightarrow 200 y\left(1-3 x^{2}-y^{2}\right)=0,200 x\left(1-x^{2}-3 y^{2}\right)=0 \\ &\Rightarrow y=0,1-3 x^{2}-y^{2}=0 ; x=0,1-x^{2}-3 y^{2}=0 \\ &y=0,1-x^{2}-3 y^{2}=0 \\ &\Rightarrow 1-x^{2}-3(0)^{2}=0 \\ &\Rightarrow x=-1,1 \end{aligned}

 x=0,13x2y2=013(02)y2=0y=1,113x2y2=0,1x23y2=039x23y2=0,1x23y2=039x23y21+x2+3y2=0028x2=0x2=1/4x=1/2,1/2\begin{aligned} &x=0,1-3 x^{2}-y^{2}=0 \\ &\Rightarrow 1-3\left(0^{2}\right)-y^{2}=0 \\ &\Rightarrow y=-1,1 \\ &1-3 x^{2}-y^{2}=0,1-x^{2}-3 y^{2}=0 \\ &\Rightarrow 3-9 x^{2}-3 y^{2}=0,1-x^{2}-3 y^{2}=0 \\ &\Rightarrow 3-9 x^{2}-3 y^{2}-1+x^{2}+3 y^{2}=0-0 \\ &\Rightarrow 2-8 x^{2}=0 \\ &\Rightarrow x^{2}=1 / 4 \\ &\Rightarrow x=-1 / 2,1 / 2 \end{aligned}

 13x2y2=0,x2=1/413(1/4)y2=0y2=1/4=y=1/2,1/2(1,0),(1,0),(0,1),(0,1),(1/2,1/2),(1/2,1/2),(1/2,1/2),(1/2,1/2) are only critical points on unit sphere T(1,0)=0,T(1,0)=0,T(0,1)=0,T(0,1)=0,T(1/2,1/2)=200(1/2)(1/2)(1(1/2)2(1/2)2)=25,T(1/2,1/2)=200(1/2)(1/2)(1(1/2)2(1/2)2)=25T(1/2,1/2)=200(1/2)(1/2)(1(1/2)2(1/2)2)=25,T(1/2,1/2)=200(1/2)(1/2)(1(1/2)2(1/2)2)=25 hottest temperature on unit sphere is 25 units \begin{aligned} &1-3 x^{2}-y^{2}=0, x^{2}=1 / 4 \\ &\Rightarrow 1-3(1 / 4)-y^{2}=0 \\ &\Rightarrow y^{2}=1 / 4 \\ &=y=-1 / 2,1 / 2 \\ &(-1,0),(1,0),(0,-1),(0,1),(-1 / 2,-1 / 2),(1 / 2,1 / 2),(-1 / 2,1 / 2),(1 / 2,-1 / 2)\\& \text { are only critical points on unit sphere } \\ &T(-1,0)=0, \\ &T(1,0)=0, \\ &T(0,-1)=0, \\ &T(0,1)=0, \\ &T(-1 / 2,-1 / 2)=200(-1 / 2)(-1 / 2)\left(1-(-1 / 2)^{2}-(-1 / 2)^{2}\right)=25, \\ &T(1 / 2,1 / 2)=200(1 / 2)(1 / 2)\left(1-(1 / 2)^{2}-(1 / 2)^{2}\right)=25 \\ &T(-1 / 2,1 / 2)=200(-1 / 2)(1 / 2)\left(1-(-1 / 2)^{2}-(1 / 2)^{2}\right)=-25, \\ &T(1 / 2,-1 / 2)=200(1 / 2)(-1 / 2)\left(1-(1 / 2)^{2}-(-1 / 2)^{2}\right)=-25 \\ &\text { hottest temperature on unit sphere is } 25 \text { units } \end{aligned}


 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS