The drawing below shows a square with side a. A straight line intersects the square and encloses
an area A. The heights x and y on the left and right side (in a distance d from the square) of
the intersecting line can be varied. Assuming that x y and x; y a, nd an expression for
the enclosed area A(x; y) with respect to x and y.
Area of the trapezoid "BCDE"
"\\dfrac{BM}{FM}=\\dfrac{CN}{FN}=\\dfrac{GK}{FK}"
Substitute
"d(BE-x)+a(BE-x)=d(CD-x)"
"d=\\dfrac{a(BE-x)}{CD-BE}"
"a+d=\\dfrac{a(CD-BE+BE-x)}{CD-BE}=\\dfrac{a(CD-x)}{CD-BE}"
"a+2d=\\dfrac{a(CD-BE+2BE-2x)}{CD-BE}"
"=\\dfrac{a(CD+BE-2x)}{CD-BE}"
"\\dfrac{BE-x}{d}=\\dfrac{CD-BE}{a}"
"\\dfrac{y-x}{a+2d}=\\dfrac{(y-x)(CD-BE)}{a(CD+BE-2x)}"
Then
"CD+BE-2x=y-x"
"CD+BE-2x=y+x"
Area of the trapezoid "BCDE"
Comments
Leave a comment