Question #275097

It's time to tidy up your work desk. you are given 27cm^2 of cardboard to build a rectangular box without a lid to store small electronic components. By using the knowledge of partial derivative, determine the maximum volume of this box




1
Expert's answer
2021-12-13T17:17:17-0500

x, y, z are sides of rectangular

surface area:

A=xy+2xz+2yz=27A=xy+2xz+2yz=27 cm2


height of box:


z=27xy2(x+y)z=\frac{27-xy}{2(x+y)}


volume of box:


V=xyz=xy27xy2(x+y)V=xyz=xy\frac{27-xy}{2(x+y)}


Vx=(27y2xy2)(x+y)27xy+x2y22(x+y)2=27y2x2y22xy32(x+y)2=0V_x=\frac{(27y-2xy^2)(x+y)-27xy+x^2y^2}{2(x+y)^2}=\frac{27y^2-x^2y^2-2xy^3}{2(x+y)^2}=0


Vy=(27x2yx2)(x+y)27xy+x2y22(x+y)2=27x2x2y22yx32(x+y)2=0V_y=\frac{(27x-2yx^2)(x+y)-27xy+x^2y^2}{2(x+y)^2}=\frac{27x^2-x^2y^2-2yx^3}{2(x+y)^2}=0


27y2x2y22xy3=027y^2-x^2y^2-2xy^3=0

27x2x2y22yx3=027x^2-x^2y^2-2yx^3=0


27y227x22xy3+2yx3=027y^2-27x^2-2xy^3+2yx^3=0

27(y2x2)+2xy(x2y2)=027(y^2-x^2)+2xy(x^2-y^2)=0


272xy=027-2xy=0

x=27/(2y)x=27/(2y)

27y2729/427y2=027y^2-729/4-27y^2=0


x2y2=0x^2-y^2=0

x=yx=y

27x2x42x4=027x^2-x^4-2x^4=0

x2(273x2)=0x^2(27-3x^2)=0

x=y=3x=y=3


Vmax=92792(3+3)=13.5V_{max}=9\frac{27-9}{2(3+3)}=13.5 cm3

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS