It's time to tidy up your work desk. you are given 27cm^2 of cardboard to build a rectangular box without a lid to store small electronic components. By using the knowledge of partial derivative, determine the maximum volume of this box
x, y, z are sides of rectangular
surface area:
"A=xy+2xz+2yz=27" cm2
height of box:
"z=\\frac{27-xy}{2(x+y)}"
volume of box:
"V=xyz=xy\\frac{27-xy}{2(x+y)}"
"V_x=\\frac{(27y-2xy^2)(x+y)-27xy+x^2y^2}{2(x+y)^2}=\\frac{27y^2-x^2y^2-2xy^3}{2(x+y)^2}=0"
"V_y=\\frac{(27x-2yx^2)(x+y)-27xy+x^2y^2}{2(x+y)^2}=\\frac{27x^2-x^2y^2-2yx^3}{2(x+y)^2}=0"
"27y^2-x^2y^2-2xy^3=0"
"27x^2-x^2y^2-2yx^3=0"
"27y^2-27x^2-2xy^3+2yx^3=0"
"27(y^2-x^2)+2xy(x^2-y^2)=0"
"27-2xy=0"
"x=27\/(2y)"
"27y^2-729\/4-27y^2=0"
"x^2-y^2=0"
"x=y"
"27x^2-x^4-2x^4=0"
"x^2(27-3x^2)=0"
"x=y=3"
"V_{max}=9\\frac{27-9}{2(3+3)}=13.5" cm3
Comments
Leave a comment