Question #275066

The drawing below shows a square with side a. A straight line intersects the square and encloses

an area A. The heights x and y on the left and right side (in a distance d from the square) of

the intersecting line can be varied. Assuming that x  y and x; y  a, nd an expression for

the enclosed area A(x; y) with respect to x and y.



1
Expert's answer
2021-12-07T11:39:44-0500


in ΔAKF:\Delta AKF:


tanθ=FKAK=EFKEBC+CD+DE=yxα+a+αtan\theta=\frac{FK}{AK}=\frac{EF-KE}{BC+CD+DE}=\frac{y-x}{\alpha+a+\alpha}


tanθ=yxa+2αtan\theta=\frac{y-x}{a+2\alpha}



in ΔAJG:in\ \Delta AJG:


tanθ=GJAJ=GJα+atan\theta=\frac{GJ}{AJ}=\frac{GJ}{\alpha+a}


GJ=(a+α)tanθ=(yx)(a+α)a+2αGJ=(a+\alpha)tan\theta=\frac{(y-x)(a+\alpha)}{a+2\alpha}


DG=GJ+JD=(a+α)tanθ+xDG=GJ+JD=(a+\alpha)tan\theta+x



in AIDin\ AID


tanθ=HIAI=HIαtan\theta=\frac{HI}{AI}=\frac{HI}{\alpha}


HI=αtanθHI=\alpha tan\theta


CH=IC+HI=x+αtanθCH=IC+HI=x+\alpha tan\theta


enclosed area is a shape of trapezoidal AC//CD


Area=12(CH+DG)×CDArea=\frac{1}{2}(CH+DG)\times CD


=12(x+αtanθ+(a+α)tanθ+x)×a=\frac{1}{2}(x+\alpha tan\theta+(a+\alpha)tan\theta+x)\times a


=12(2x+(a+α)tanθ)×a=\frac{1}{2}(2x+(a+\alpha)tan\theta)\times a


=12(2x+(a+2α)yx(a+2α))×a=\frac{1}{2}(2x+(a+2\alpha)\frac{y-x}{(a+2\alpha)})\times a


=12(2x+yx)a=\frac{1}{2}(2x+y-x)a


=12(x+y)a=\frac{1}{2}(x+y)a


A(x,y)=a2(x+y)A(x,y)=\frac{a}{2}(x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS