The drawing below shows a square with side a. A straight line intersects the square and encloses
an area A. The heights x and y on the left and right side (in a distance d from the square) of
the intersecting line can be varied. Assuming that x y and x; y a, nd an expression for
the enclosed area A(x; y) with respect to x and y.
in "\\Delta AKF:"
"tan\\theta=\\frac{FK}{AK}=\\frac{EF-KE}{BC+CD+DE}=\\frac{y-x}{\\alpha+a+\\alpha}"
"tan\\theta=\\frac{y-x}{a+2\\alpha}"
"in\\ \\Delta AJG:"
"tan\\theta=\\frac{GJ}{AJ}=\\frac{GJ}{\\alpha+a}"
"GJ=(a+\\alpha)tan\\theta=\\frac{(y-x)(a+\\alpha)}{a+2\\alpha}"
"DG=GJ+JD=(a+\\alpha)tan\\theta+x"
"in\\ AID"
"tan\\theta=\\frac{HI}{AI}=\\frac{HI}{\\alpha}"
"HI=\\alpha tan\\theta"
"CH=IC+HI=x+\\alpha tan\\theta"
enclosed area is a shape of trapezoidal AC//CD
"Area=\\frac{1}{2}(CH+DG)\\times CD"
"=\\frac{1}{2}(x+\\alpha tan\\theta+(a+\\alpha)tan\\theta+x)\\times a"
"=\\frac{1}{2}(2x+(a+\\alpha)tan\\theta)\\times a"
"=\\frac{1}{2}(2x+(a+2\\alpha)\\frac{y-x}{(a+2\\alpha)})\\times a"
"=\\frac{1}{2}(2x+y-x)a"
"=\\frac{1}{2}(x+y)a"
"A(x,y)=\\frac{a}{2}(x+y)"
Comments
Leave a comment