4.
a)
∫(x3+x31)dx=4x4−2x21+C b)
∫0π/23+4cosx−4sinxdx
∫3+4cosx−4sinxdx Use u -substitution
u=3+4cosx,du=−4sinx
∫3+4cosx−4sinxdx=∫ududx=ln(∣u∣)+C
=ln(∣3+4cosx∣)+C
∫0π/23+4cosx−4sinxdx=[ln(∣3+4cosx∣)]π/20
=ln(∣3+4cos(π/2)∣)−ln(∣3+4cos(0)∣)
=ln3−ln7=ln(3/7)
Comments