Question #275030

4. a) Evaluate : integrate (x ^ 3 + 1/(x ^ 3)) dx


b) int 0 ^ pi 2 -4 sin xdx 3+4 cos x

1
Expert's answer
2021-12-08T12:19:03-0500

4.

a)


(x3+1x3)dx=x4412x2+C\int (x^3+\dfrac{1}{x^3})dx=\dfrac{x^4}{4}-\dfrac{1}{2x^2}+C

b)


0π/24sinx3+4cosxdx\displaystyle\int_{0}^{\pi/2}\dfrac{-4\sin x}{3+4\cos x}dx

4sinx3+4cosxdx\int \dfrac{-4\sin x}{3+4\cos x}dx

Use uu -substitution

u=3+4cosx,du=4sinxu=3+4\cos x, du=-4\sin x


4sinx3+4cosxdx=duudx=ln(u)+C\int \dfrac{-4\sin x}{3+4\cos x}dx=\int \dfrac{du}{u}dx=\ln(|u|)+C

=ln(3+4cosx)+C=\ln(|3+4\cos x|)+C

0π/24sinx3+4cosxdx=[ln(3+4cosx)]π/20\displaystyle\int_{0}^{\pi/2}\dfrac{-4\sin x}{3+4\cos x}dx=[\ln(|3+4\cos x|)]\begin{matrix} \pi/2 \\ 0 \end{matrix}

=ln(3+4cos(π/2))ln(3+4cos(0))=\ln(|3+4\cos (\pi/2)|)-\ln(|3+4\cos (0)|)

=ln3ln7=ln(3/7)=\ln 3-\ln 7=\ln (3/7)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS