x3+y3=3y3=3−x3
Differentiating implicitly, we get
3y2dxdy=−3x2dxdy=−y2x2y=sin(x)tan(x)
We take the natural logarithm to obtain lny=tanxlnsinx
Next, we take the exponential of both sides to obtain
y1⋅dxdy=sec2xlnsinx+tanxsinx1⋅cosx=1+lnsinxsec2x
⟹y1⋅dxdy=1+lnsinxsec2x
Multiplying both sides by y=sinxtanx , we have
dxd(sinxtanx)=(1+lnsinxsec2x)sinxtanxu=2x3+3x2y+xy2+y2
The 2nd order partial derivatives is given by uxx,uxy,uyy
uxx=12x+6yuxy=6x+2yuyx=6x+2yuyy=2x+2
Comments
Leave a comment