Question #275025

5. a) Calculate the area under the curve y = x ^ 3 + 4x + 1 from x = - 3 to x = 3



b) Evaluate: integrate x * e ^ x dx from 0 to 4



1
Expert's answer
2021-12-06T16:46:35-0500

Solution.

a)


y=x3+4x+1,3x3y=x^3+4x+1, -3\leq x\leq 3

The graph of this function:


S=33(x3+4x+1)dx=(x44+4x22+x)33==814+18+381418+3=6S=\int_{-3}^3(x^3+4x+1)dx=(\frac{x^4}{4}+4\frac{x^2}{2}+x)|_{-3}^3=\newline =\frac{81}{4}+18+3-\frac{81}{4}-18+3=6

Answer. S=6 sq.units.

b)


04xexdx={u=x,dv=exdx,du=dx,v=ex}==xex0404exdx=4e4ex04=4e4e4+e0=3e4+1\int_0^4xe^xdx=\{u=x, dv=e^xdx,du=dx, v=e^x \}=\newline =xe^x|_0^4-\int_0^4e^xdx=4e^4-e^x|_0^4=4e^4-e^4+e^0=3e^4+1

Answer. 3e4+1.3e^4+1.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS