5. a) Calculate the area under the curve y = x ^ 3 + 4x + 1 from x = - 3 to x = 3 .
b) Evaluate: integrate x * e ^ x dx from 0 to 4
(a) "y = x ^ 3 + 4x + 1"
Graph will intersect the curve at "x=-0.25"
Area under the curve (green region) = "\\int_{-0.25}^{3}(x^3+4x+1)dx-\\int_{-3}^{-0.25}(x^3+4x+1)dx"
"(x^4\/4+4x^2\/2+x)_{-0.25}^{3} \\ - (x^4\/4+4x^2\/2+x)_{-3}^{-0.25} \\\\\n=27.89+21.13+3.25-(14.29+15.13+2.75)\\\\\n=20.1"
(b) "\\int_{0}^{4} xe^xdx= [xe^x-\\int (e^x.1)dx]_{0}^{4}\\\\"
"=[xe^x-\\int (e^x.1)dx]_{0}^{4}=[xe^x-e^x]_{0}^{4}=4.e^4-e^4-0+1=54.59"
Comments
Leave a comment