2. a) Find the derivatives of the following functions with respect to x.
X^3+Y^3=3
Y= (sin x) ^tan x
Q1)
x³ + y³ = 3
The function is in implicit form.
Differentiating with respect to x
3x² + 3y² "\\frac{dy}{dx}=0"
=> 3y² "\\frac{dy}{dx}" = -3x²
=> y² "\\frac{dy}{dx}=" -x²
=> "\\frac{dy}{dx}= -\\frac{x\u00b2}{y\u00b2}"
Q2
y = (sin x)tan x
Taking logarithm of both sides
logey = loge(sin x)tan x
=> logey =tan x loge(sin x)
Differentiating with respect to x
"\\frac{1}{y}\\frac{dy}{dx}= tanx\\frac{d}{dx}log_{e}sinx+log_{e}sinx\\frac{d}{dx}tanx"
"\\frac{1}{y}\\frac{dy}{dx}= tanx\\frac{1}{sinx}cosx +log_{e}sinx.(sec\u00b2x)"
=> "\\frac{1}{y}\\frac{dy}{dx}= tanx.cotx +log_{e}sinx.(sec\u00b2x)"
=> "\\frac{dy}{dx}" = y (1 +sec²x logesinx)
=> "\\frac{dy}{dx}" = (sin x)tan x(1 + sec²x logesinx)
Comments
Leave a comment